STAT4‐ and STAT6‐signaling molecules in a murine model of multiple sclerosis
pmid: 16352646
STAT4‐ and STAT6‐signaling molecules in a murine model of multiple sclerosis
ABSTRACT Epidemiological studies suggest that an environmental factor (possibly a virus) acquired early in life may trigger multiple sclerosis (MS). The virus may remain dormant in the central nervous system but then becomes activated in adulthood. All existing models of MS are characterized by inflammation or demyelination that follows days after virus infection or antigen inoculation. While investigating the role of CD4 + T cell responses following Theiler's virus infection in mice deficient in STAT4 or STAT6, we discovered a model in which virus infection was followed by demyelination after a very prolonged incubation period. STAT4−/− mice were resistant to demyelination for 180 days after infection, but developed severe demyelination after this time point. Inflammatory cells and up‐regulation of Class I and Class II MHC antigens characterized these lesions. Virus antigen was partially controlled during the early chronic phase of the infection even though viral RNA levels remained high throughout infection. Demyelination correlated with the appearance of virus antigen expression. Bone marrow reconstitution experiments indicated that the mechanism of the late onset demyelination was the result of the STAT4−/− immune system. Thus, virus infection of STAT4−/− mice results in a model that may allow for dissection of the immune events predisposing to late‐onset demyelination in MS.
- Mayo Clinic United States
CD4-Positive T-Lymphocytes, Neurons, Multiple Sclerosis, Macrophages, Genes, MHC Class II, Brain, Genes, MHC Class I, CD8-Positive T-Lymphocytes, STAT4 Transcription Factor, Disease Models, Animal, Mice, Gene Expression Regulation, Spinal Cord, Theilovirus, Cardiovirus Infections, Animals, Genetic Predisposition to Disease, STAT6 Transcription Factor, Gene Deletion, Signal Transduction
CD4-Positive T-Lymphocytes, Neurons, Multiple Sclerosis, Macrophages, Genes, MHC Class II, Brain, Genes, MHC Class I, CD8-Positive T-Lymphocytes, STAT4 Transcription Factor, Disease Models, Animal, Mice, Gene Expression Regulation, Spinal Cord, Theilovirus, Cardiovirus Infections, Animals, Genetic Predisposition to Disease, STAT6 Transcription Factor, Gene Deletion, Signal Transduction
10 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).14 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
