Specification of Leaf Polarity in Arabidopsis via the trans-Acting siRNA Pathway
pmid: 16682355
Specification of Leaf Polarity in Arabidopsis via the trans-Acting siRNA Pathway
Plants leaves develop proximodistal, dorsoventral (adaxial-abaxial), and mediolateral patterns following initiation. The Myb domain gene PHANTASTICA (PHAN) is required for adaxial fate in many plants , but the Arabidopsis ortholog ASYMMETRIC LEAVES1 (AS1) has milder effects, suggesting that alternate or redundant pathways exist . We describe enhancers of as1 with more elongate and dissected leaves. As well as RDR6, an RNA-dependent RNA polymerase previously proposed to influence as1 through microRNA , these enhancers disrupt ARGONAUTE7 (AGO7)/ZIPPY, SUPPRESSOR OF GENE SILENCING3 (SGS3), and DICER-LIKE4 (DCL4), which instead regulate trans-acting small interfering RNA (ta-siRNA) . Microarray analysis revealed that the AUXIN RESPONSE FACTOR genes ETTIN (ETT)/ARF3 and ARF4 were upregulated in ago7, whereas FILAMENTOUS FLOWER (FIL) was upregulated only in as1 ago7 double mutants. RDR6 and SGS3 likewise repress these genes, which specify abaxial fate . We show that the trans-acting siRNA gene TAS3, which targets ETT and ARF4, is expressed in the adaxial domain, and ett as1 ago7 triple mutants resemble as1. Thus FIL is downregulated redundantly by AS1 and by TAS3, acting through ETT, revealing a role for ta-siRNA in leaf polarity. RDR6 and DCL4 are required for systemic silencing, perhaps implicating ta-siRNA as a mobile signal.
- John Innes Centre United Kingdom
- Norwich University United States
- Cold Spring Harbor Laboratory United States
Agricultural and Biological Sciences(all), Biochemistry, Genetics and Molecular Biology(all), Arabidopsis Proteins, Arabidopsis, Genes, Homeobox, Nuclear Proteins, DEVBIO, DNA-Binding Proteins, Plant Leaves, Mutation, Trans-Activators, CELLBIO, RNA, Small Interfering, Body Patterning, Transcription Factors
Agricultural and Biological Sciences(all), Biochemistry, Genetics and Molecular Biology(all), Arabidopsis Proteins, Arabidopsis, Genes, Homeobox, Nuclear Proteins, DEVBIO, DNA-Binding Proteins, Plant Leaves, Mutation, Trans-Activators, CELLBIO, RNA, Small Interfering, Body Patterning, Transcription Factors
10 Research products, page 1 of 1
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).329 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
