Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cancer Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Research
Article
Data sources: UnpayWall
Cancer Research
Article . 2008 . Peer-reviewed
Data sources: Crossref
Cancer Research
Article . 2008
versions View all 2 versions

Single-Cell Transcription Site Activation Predicts Chemotherapy Response in Human Colorectal Tumors

Authors: Rossanna C, Pezo; Saumil J, Gandhi; L Andrew, Shirley; Richard G, Pestell; Leonard H, Augenlicht; Robert H, Singer;

Single-Cell Transcription Site Activation Predicts Chemotherapy Response in Human Colorectal Tumors

Abstract

Abstract Candidate gene and pathway approaches, and unbiased gene expression profiling, have identified marker signatures predictive of tumor phenotypes, such as drug sensitivity and invasive or metastatic potential. However, application of such information to evaluation of tumors in the clinic is limited by cell heterogeneity in the tumor. We have developed a novel method of fluorescence in situ hybridization (FISH) that can detect transcriptional activation of individual genes at their site in single cells in the interphase nucleus. A major obstacle in the treatment of colorectal cancer is relative insensitivity to the chemotherapeutic agent 5-Fluorouracil (5-FU). Here, we have developed a sensitive approach to predict relative sensitivity of colorectal cancer cells to 5-FU, using FISH with probes targeted to nascent mRNAs to measure the number of individual cells with active transcription sites for a panel of candidate genes. These results reveal that the transcriptional status of four key genes, thymidylate synthase (TYMS), MORF-related gene X (MRGX), Bcl2-antagonist/killer (BAK), and ATPase, Cu2+ transporting β polypeptide (ATP7B), can accurately predict response to 5-FU. As proof of principle, we show that this transcriptional profile is predictive of response to 5-FU in a small number of patient colon tumor tissues. This approach provides a novel ability to identify and characterize unique minor cell populations in the tumor that may exhibit relative resistance to chemotherapy. [Cancer Res 2008;68(13):4977–82]

Related Organizations
Keywords

Adenosine Triphosphatases, Carcinoma, Antineoplastic Agents, Thymidylate Synthase, HCT116 Cells, Prognosis, Biomarkers, Pharmacological, bcl-2 Homologous Antagonist-Killer Protein, Copper-Transporting ATPases, Drug Resistance, Neoplasm, Predictive Value of Tests, Cell Line, Tumor, Humans, Fluorouracil, Transcription Initiation Site, Colorectal Neoplasms, Cation Transport Proteins, Algorithms, In Situ Hybridization, Fluorescence, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Average
Average
bronze
Related to Research communities
Cancer Research