Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Plantarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Plant
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Plant
Article . 2008
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Plant
Article . 2008 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Molecular Plant
Article . 2010
versions View all 3 versions

Interaction of the Arabidopsis UV-B-Specific Signaling Component UVR8 with Chromatin

Authors: Cloix, Catherine; Jenkins, Gareth I.;

Interaction of the Arabidopsis UV-B-Specific Signaling Component UVR8 with Chromatin

Abstract

Arabidopsis UV RESISTANCE LOCUS8 (UVR8) is a UV-B-specific signaling component that regulates expression of a range of genes concerned with UV protection. Here, we investigate the interaction of UVR8 with chromatin. Using antibodies specific to UVR8 in chromatin immunoprecipitation (ChIP) assays with wild-type plants, we show that native UVR8 binds to chromatin in vivo. Similar experiments using an anti-GFP antibody with plants expressing a GFP-UVR8 fusion show that UVR8 associates with a relatively small region of chromatin containing the HY5 gene. UVR8 interacts with chromatin containing the promoter regions of other genes, but not with all the genes it regulates. UV-B is not required for the interaction of UVR8 with chromatin because association with several gene loci is observed in the absence of UV-B. Pull-down assays demonstrate that UVR8 associates with histones in vivo and competition experiments indicate that the interaction is preferentially with histone H2B. ChIP experiments using antibodies that recognize specific histone modifications indicate that the UV-B-stimulated transcription of some genes may be correlated with histone modification. In particular, the ELIP1 promoter showed a significant enrichment of diacetyl histone H3 (K9/K14) following UV-B exposure. These findings increase understanding of the interaction of the key UV-B-specific regulator UVR8 with chromatin.

Related Organizations
Keywords

Transcription, Genetic, Arabidopsis Proteins, Chromosomal Proteins, Non-Histone, Ultraviolet Rays, Recombinant Fusion Proteins, Blotting, Western, Green Fluorescent Proteins, Plant Science, Polymerase Chain Reaction, Chromatin, Histones, Gene Expression Regulation, Plant, Promoter Regions, Genetic, Molecular Biology, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    117
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
117
Top 10%
Top 10%
Top 10%
hybrid