Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Journal of Compa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Comparative Neurology
Article . 2002 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Early development of the Drosophila brain: IV. Larval neuropile compartments defined by glial septa

Authors: Amelia, Younossi-Hartenstein; Paul M, Salvaterra; Volker, Hartenstein;

Early development of the Drosophila brain: IV. Larval neuropile compartments defined by glial septa

Abstract

AbstractIn this study, we have analyzed the architecture of the brain neuropile of the Drosophila larva, which is formed by two main structural elements: long axon tracts and terminal axonal/dendritic arborizations carrying synapses. By using several molecular markers expressed in neurons and glial cells, we show that the early larval neuropile is subdivided by glial sheaths into numerous compartments. The three‐dimensional layout of these compartments and their relationship to the pattern of long axon tracts described in the accompanying article (Nassif et al. [2003] J. Comp. Neurol 417–434) was modeled by using a three‐dimensional illustration computer software. On the basis of their location relative to each other and to long axon tracts, larval brain compartments can be identified with compartments defined by structural and functional criteria for the adult fly brain. We find that small precursors of most of the compartments of the adult central brain can be identified in the early larva. Changes in brain compartmental organization occurring during larval growth are described. Neuropile compartments, representing easily identifiable landmark structures, will assist in future analyses of Drosophila brain development in which the exact location of neurons and their axonal trajectories is of importance. J. Comp. Neurol. 455:435–450, 2003. © 2002 Wiley‐Liss, Inc.

Keywords

Models, Anatomic, Neuropil, Brain, Nerve Tissue Proteins, Antigens, Differentiation, Choline O-Acetyltransferase, Imaging, Three-Dimensional, Larva, Morphogenesis, Animals, Drosophila Proteins, Drosophila, Neuroglia, Glycoproteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    69
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
69
Top 10%
Top 10%
Top 10%