CircSERPINA3 regulates SERPINA3-mediated apoptosis, autophagy and aerobic glycolysis of prostate cancer cells by competitively binding to MiR-653-5p and recruiting BUD13
CircSERPINA3 regulates SERPINA3-mediated apoptosis, autophagy and aerobic glycolysis of prostate cancer cells by competitively binding to MiR-653-5p and recruiting BUD13
Abstract Background Prostate cancer (PCa) belongs to an epithelial malignancy that occurs in the prostate gland and is the most common malignancy of the male genitourinary system. Referring to related literature, circSERPINA3 has been reported to be up-regulated in PCa. However, its biological function remains unclear. Purpose This study aimed to reveal the specific role and relevant molecular mechanism of circSERPINA3 in PCa. Methods RT-qPCR was used to examine gene expression and functional analyses were conducted to verify the effect of circSERPINA3 on cell apoptosis, autophagy and aerobic glycolysis in PCa cells. Mechanism assays were applied to evaluate the relationship among circSERPINA3/miR-653-5p/SERPINA3/BUD13. Results CircSERPINA3 was verified to be up-regulated in PCa cells and to inhibit cell apoptosis while promoting aerobic glycolysis and autophagy in PCa cells. CircSERPINA3 and SERPINA3 were also testified to bind to miR-653-5p through a line of mechanism experiments. Moreover, it was discovered that circSERPINA3 could stabilize SERPINA3 mRNA via recruiting BUD13. Additionally, SERPINA3 was verified to inhibit cell apoptosis, while promoting aerobic glycolysis and autophagy in PCa cells. Conclusions Our study suggested that circSERPINA3 regulated apoptosis, autophagy and aerobic glycolysis of PCa cells by competitively binding to miR-653-5p and recruiting BUD13. Graphic abstract
- Central South University China (People's Republic of)
Male, Prostate cancer, circSERPINA3, Research, SERPINA3, miR-653-5p, R, Prostate, Prostatic Neoplasms, RNA-Binding Proteins, Apoptosis, Gene Expression Regulation, Neoplastic, MicroRNAs, Cell Line, Tumor, Autophagy, Medicine, Humans, BUD13, Glycolysis, Serpins, Cell Proliferation
Male, Prostate cancer, circSERPINA3, Research, SERPINA3, miR-653-5p, R, Prostate, Prostatic Neoplasms, RNA-Binding Proteins, Apoptosis, Gene Expression Regulation, Neoplastic, MicroRNAs, Cell Line, Tumor, Autophagy, Medicine, Humans, BUD13, Glycolysis, Serpins, Cell Proliferation
9 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).22 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
