Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Medicine R...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Medicine Reports
Article . 2015 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

DAL-1/4.1B contributes to epithelial-mesenchymal transition via regulation of transforming growth factor-β in lung cancer cell lines

Authors: Feng, Yu; Hua, Yang; Zhanmin, Zhang; Zhijun, Wang; Jianping, Xiong;

DAL-1/4.1B contributes to epithelial-mesenchymal transition via regulation of transforming growth factor-β in lung cancer cell lines

Abstract

The present study aimed to investigate the effects of the tumor suppressor gene differentially expressed in adenocarcinoma of the lung 1 (DAL‑1)/4.1B on early‑stage adenocarcinoma of the lung. The role of DAL‑1/4.1B in the epithelial‑mesenchymal transition (EMT), which is implicated in cancer metastasis, was examined using DAL‑1 knockdown and overexpression, followed by polymerase chain reaction and western blot analysis of EMT markers, as well as cell counting and cell migration/invasion assays. The results showed that DAL‑1/4.1B has a role in transforming growth factor (TGF)‑β‑induced EMT in non‑small cell lung cancer cells. Silencing of DAL‑1/4.1B with inhibitory RNAs altered the expression of numerous EMT markers, including E‑cadherin and β‑catenin, whereas overexpression of DAL‑1/4.1B had the opposite effect. In addition, DAL‑1/4.1B expression was induced following TGF‑β treatment at the protein and mRNA level. DAL‑1/4.1B deficiency impaired TGF‑β‑induced EMT and increased cell migration and invasion. These results suggested that DAL‑1/4.1B contributed to the EMT and may be important for tumor metastasis in lung cancer. Together with the results of a previous study by our group, the present study suggested that DAL‑1/4.1B acts as a tumor suppressor in the early transformation process in lung cancer, while in later stages, it functions as an oncogene affecting the biological features of human lung carcinoma cells. The results of the present study provided evidence for the feasibility of utilizing DAL‑1/4.1B as a target for lung cancer gene therapy.

Related Organizations
Keywords

Epithelial-Mesenchymal Transition, Lung Neoplasms, Microfilament Proteins, Down-Regulation, Cadherins, Gene Expression Regulation, Neoplastic, Antigens, CD, Transforming Growth Factor beta, Carcinoma, Non-Small-Cell Lung, Cell Line, Tumor, Humans, Gene Silencing, RNA, Messenger, beta Catenin, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Average
bronze