Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLoS ONEarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2014 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2016
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2014
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2014
Data sources: DOAJ
versions View all 4 versions

Microtubule Stabilization by Mdp3 Is Partially Attributed to Its Modulation of HDAC6 in Addition to Its Association with Tubulin and Microtubules

Authors: Tala; Xiaoou Sun; Jie Chen; Linlin Zhang; Ningning Liu; Jun Zhou; Dengwen Li; +1 Authors

Microtubule Stabilization by Mdp3 Is Partially Attributed to Its Modulation of HDAC6 in Addition to Its Association with Tubulin and Microtubules

Abstract

Microtubule-mediated cellular events such as intracellular transport and the maintenance of cell polarity are highly dependent upon microtubule stability, which is controlled by a repertoire of microtubule-associated proteins (MAPs) in the cell. MAP7 domain-containing protein 3 (Mdp3) has recently been identified as a critical regulator of microtubule stability. However, it remains elusive how Mdp3 carries out this function. In this study, by examination of tubulin partitioning between the polymer and soluble dimer forms, we found that Mdp3 could protect microtubules from cold- or nocodazole-induced depolymerization. Immunoblotting and immunofluorescence microscopy showed that knockdown of Mdp3 expression significantly reduced the level of tubulin acetylation. In vitro tubulin polymerization assays revealed that the amino-terminal region of Mdp3 was necessary for its ability to stabilize microtubules. Immunoprecipitation and pulldown experiments showed that the amino-terminal region mediated the interaction of Mdp3 with histone deacetylase 6 (HDAC6), in addition to its association with tubulin and microtubules. Immunofluorescence microscopy further demonstrated that endogenous Mdp3 and HDAC6 colocalized in the cytoplasm. Moreover, depletion of Mdp3 dramatically increased the activity of HDAC6 toward tubulin deacetylation. These findings suggest that Mdp3 controls microtubule stability through its binding to tubulin and microtubules as well as its regulation of HDAC6 activity.

Related Organizations
Keywords

Science, Nocodazole, Q, R, Acetylation, Histone Deacetylase 6, Microtubules, Histone Deacetylases, Cold Temperature, Tubulin, Gene Knockdown Techniques, Human Umbilical Vein Endothelial Cells, Medicine, Humans, Microtubule-Associated Proteins, Research Article, HeLa Cells, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Top 10%
Green
gold