<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
MicroRNA–Directed siRNA Biogenesis in Caenorhabditis elegans

pmid: 20386745
pmc: PMC2851571
MicroRNA–Directed siRNA Biogenesis in Caenorhabditis elegans
RNA interference (RNAi) is a post-transcriptional silencing process, triggered by double-stranded RNA (dsRNA), leading to the destabilization of homologous mRNAs. A distinction has been made between endogenous RNAi-related pathways and the exogenous RNAi pathway, the latter being essential for the experimental use of RNAi. Previous studies have shown that, in Caenorhabditis elegans, a complex containing the enzymes Dicer and the Argonaute RDE-1 process dsRNA. Dicer is responsible for cleaving dsRNA into short interfering RNAs (siRNAs) while RDE-1 acts as the siRNA acceptor. RDE-1 then guides a multi-protein complex to homologous targets to trigger mRNA destabilization. However, endogenous role(s) for RDE-1, if any, have remained unexplored. We here show that RDE-1 functions as a scavenger protein, taking up small RNA molecules from many different sources, including the microRNA (miRNA) pathway. This is in striking contrast to Argonaute proteins functioning directly in the miRNA pathway, ALG-1 and ALG-2: these proteins exclusively bind miRNAs. While playing no significant role in the biogenesis of the main pool of miRNAs, RDE-1 binds endogenous miRNAs and triggers RdRP activity on at least one perfectly matching, endogenous miRNA target. The resulting secondary siRNAs are taken up by a set of Argonaute proteins known to act as siRNA acceptors in exogenous RNAi, resulting in strong mRNA destabilization. Our results show that RDE-1 in an endogenous setting is actively screening the transcriptome using many different small RNAs, including miRNAs, as a guide, with implications for the evolution of transcripts with a potential to be recognized by Dicer.
- University of Groningen Netherlands
- Spanish National Research Council Spain
- University of Geneva Switzerland
- Royal Netherlands Academy of Arts and Sciences Netherlands
- University Medical Center Utrecht Netherlands
Ribonuclease III, QH426-470, MicroRNAs, Genetics, Animals, RNA Interference, RNA, Messenger, RNA, Small Interfering, Caenorhabditis elegans, Caenorhabditis elegans Proteins, Research Article
Ribonuclease III, QH426-470, MicroRNAs, Genetics, Animals, RNA Interference, RNA, Messenger, RNA, Small Interfering, Caenorhabditis elegans, Caenorhabditis elegans Proteins, Research Article
13 Research products, page 1 of 2
- 2007IsAmongTopNSimilarDocuments
- 2009IsAmongTopNSimilarDocuments
- 2007IsAmongTopNSimilarDocuments
- 2009IsAmongTopNSimilarDocuments
- 2011IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2018IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).69 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%