Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mechanisms of Develo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article . 1995
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mechanisms of Development
Article . 1995 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions

Two otu transcripts are selectively localised in Drosophila oogenesis by a mechanism that requires a function of the otu protein

Authors: Tirronen, Mika; Lahti, Vesa-Pekka; Heino, Tapio I.; Roos, Christophe;

Two otu transcripts are selectively localised in Drosophila oogenesis by a mechanism that requires a function of the otu protein

Abstract

The ovarian tumour gene (otu) is required for several processes during Drosophila oogenesis. The locus encodes two protein isoforms that have been proposed to act during different stages of oogenesis. Here we show that the corresponding otu mRNAs display a dynamic pattern of expression during oogenesis. The 4.1 kb mRNA encoding the 104 kDa isoform is expressed throughout adult oogenesis, but is mainly restricted to nurse cells. The 3.2 kb mRNA encoding the 98 kDa protein isoform is selectively localised in the oocyte up to stage 9. Both mRNAs are expressed abundantly in nurse cells at stages 10-11. We propose that the oocyte-specific function of otu is realised by the 98 kDa isoform. We show that the export of the 3.2 kb mRNA from the nurse cell nuclei requires a functional otu protein. The otu protein is also required for the correct distribution of the pumilio and oskar mRNAs, while the Bic-D, K10 and staufen mRNAs are localised in wild type fashion in otu mutants. Furthermore, we have observed a region of homology between the carboxy-terminal part of the otu protein and the mammalian microtubule associated proteins. The more severe the mutation in this region of homology, the more disturbed mRNA distribution is observed in otu mutants.

Related Organizations
Keywords

Embryology, Transcription, Genetic, Molecular Sequence Data, Oogenesis, Gene Expression Regulation, Insect Hormones, Animals, Drosophila Proteins, Drosophila, Female, Amino Acid Sequence, RNA, Messenger, Sequence Alignment, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Average
Average
Top 10%
hybrid