<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>A novel perspective on stem cell homing and mobilization: review on bioactive lipids as potent chemoattractants and cationic peptides as underappreciated modulators of responsiveness to SDF-1 gradients
A novel perspective on stem cell homing and mobilization: review on bioactive lipids as potent chemoattractants and cationic peptides as underappreciated modulators of responsiveness to SDF-1 gradients
Hematopoietic stem progenitor cells (HSPCs) respond robustly to α-chemokine stromal-derived factor-1 (SDF-1) gradients, and blockage of CXCR4, a seven-transmembrane-spanning G(αI)-protein-coupled SDF-1 receptor, mobilizes HSPCs into peripheral blood. Although the SDF-1-CXCR4 axis has an unquestionably important role in the retention of HSPCs in bone marrow (BM), new evidence shows that, in addition to SDF-1, the migration of HSPCs is directed by gradients of the bioactive lipids sphingosine-1 phosphate and ceramide-1 phosphate. Furthermore, the SDF-1 gradient may be positively primed/modulated by cationic peptides (C3a anaphylatoxin and cathelicidin) and, as previously demonstrated, HSPCs respond robustly even to very low SDF-1 gradients in the presence of priming factors. In this review, we discuss the role of bioactive lipids in stem cell trafficking and the consequences of HSPC priming by cationic peptides. Together, these phenomena support a picture in which the SDF-1-CXCR4 axis modulates homing, BM retention and mobilization of HSPCs in a more complex way than previously envisioned.
- University of Virginia United States
- Wrocław Medical University Poland
- University of Louisville United States
- University of Kentucky United States
- Pomeranian Medical University Poland
Mice, Receptors, CXCR4, Cations, Animals, Humans, Peptides, Lipids, Chemokine CXCL12, Hematopoietic Stem Cell Mobilization
Mice, Receptors, CXCR4, Cations, Animals, Humans, Peptides, Lipids, Chemokine CXCL12, Hematopoietic Stem Cell Mobilization
10 Research products, page 1 of 1
- 2007IsAmongTopNSimilarDocuments
- 2010IsAmongTopNSimilarDocuments
- 2006IsAmongTopNSimilarDocuments
- 2004IsAmongTopNSimilarDocuments
- 2010IsAmongTopNSimilarDocuments
- 2009IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).98 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
