Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Molecular...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hal
Article . 2009
Data sources: Hal
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL Descartes
Article . 2009
Data sources: HAL Descartes
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular Biology
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions

The Box H/ACA snoRNP Assembly Factor Shq1p is a Chaperone Protein Homologous to Hsp90 Cochaperones that Binds to the Cbf5p Enzyme

Authors: Godin, Katherine; Walbott, Hélène; Leulliot, Nicolas; van Tilbeurgh, Herman; Varani, Gabriele;

The Box H/ACA snoRNP Assembly Factor Shq1p is a Chaperone Protein Homologous to Hsp90 Cochaperones that Binds to the Cbf5p Enzyme

Abstract

Box H/ACA small nucleolar (sno) ribonucleoproteins (RNPs) are responsible for the formation of pseudouridine in a variety of RNAs and are essential for ribosome biogenesis, modification of spliceosomal RNAs, and telomerase stability. A mature snoRNP has been reconstituted in vitro and is composed of a single RNA and four proteins. However, snoRNP biogenesis in vivo requires multiple factors to coordinate a complex and poorly understood assembly and maturation process. Among the factors required for snoRNP biogenesis in yeast is Shq1p, an essential protein necessary for stable expression of box H/ACA snoRNAs. We have found that Shq1p consists of two independent domains that contain casein kinase 1 phosphorylation sites. We also demonstrate that Shq1p binds the pseudourydilating enzyme Cbf5p through the C-terminal domain, in synergy with the N-terminal domain. The NMR solution structure of the N-terminal domain has striking homology to the 'Chord and Sgt1' domain of known Hsp90 cochaperones, yet Shq1p does not interact with the yeast Hsp90 homologue in vitro. Surprisingly, Shq1p has stand-alone chaperone activity in vitro. This activity is harbored by the C-terminal domain, but it is increased by the presence of the N-terminal domain. These results provide the first evidence of a specific biochemical activity for Shq1p and a direct link to the H/ACA snoRNP.

Keywords

Models, Molecular, Magnetic Resonance Spectroscopy, Saccharomyces cerevisiae Proteins, [SDV.BBM.BS] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM], Molecular Sequence Data, [SDV.BBM.BP] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biophysics, Saccharomyces cerevisiae, [SDV.BBM.BM] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Molecular biology, Protein Interaction Mapping, [SDV.BBM] Life Sciences [q-bio]/Biochemistry, Molecular Biology, Protein Interaction Domains and Motifs, Amino Acid Sequence, [SDV.BBM.BC] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM], Hydro-Lyases, Nuclear Proteins, Ribonucleoproteins, Small Nuclear, Protein Structure, Tertiary, [SDV] Life Sciences [q-bio], [SDV.BBM.MN] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Molecular Networks [q-bio.MN], Microtubule-Associated Proteins, Sequence Alignment, Molecular Chaperones, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Average
Average
Top 10%
Green
bronze