Powered by OpenAIRE graph

Myocardial Effects of Halothane and Isoflurane in Hamsters with Hypertrophic Cardiomyopathy 

Authors: B, Vivien; J L, Hanouz; P Y, Gueugniaud; Y, Lecarpentier; P, Coriat; B, Riou;

Myocardial Effects of Halothane and Isoflurane in Hamsters with Hypertrophic Cardiomyopathy 

Abstract

Background The effects of halothane and isoflurane on myocardial contraction and relaxation in diseased myocardium are not completely understood. Methods The effects of equianesthetic concentrations of halothane and isoflurane on inotropy and lusitropy in left ventricular papillary muscles of healthy hamsters and those with genetically induced cardiomyopathy (strain BIO 14.6) were investigated in vitro (29 degrees C; pH 7.40; Ca2+ 2.5 mM; stimulation frequency, 3/min) in isotonic and isometric conditions. Results Halothane induced a negative inotropic effect that was greater in cardiomyopathic than in healthy hamsters (1.5 vol%, active isometric force (AF): 19 +/- 8% vs. 28 +/- 11% of control values; P < 0.05). Isoflurane induced a negative inotropic effect that was greater in cardiomyopathic than in healthy hamsters (2.0 vol%, AF: 64 +/- 13% vs. 75 +/- 11% of control values; P < 0.01). However, the negative inotropic effects of halothane and isoflurane were not different for cardiomyopathic or healthy hamsters when their concentrations were corrected for minimum alveolar concentration (MAC) values in each strain. Halothane induced a negative lusitropic effect under low load, which was more important in cardiomyopathic hamsters, suggesting a greater impairment in calcium uptake by the sarcoplasmic reticulum. In contrast, isoflurane induced a moderate positive lusitropic effect under low load in healthy but not in cardiomyopathic hamsters. Halothane and isoflurane induced no significant lusitropic effect under high load. Conclusions Halothane and isoflurane had greater negative inotropic effects in cardiomyopathic than in healthy hamsters. Nevertheless, no significant differences in their inotropic effects were noted when concentrations were correlated as a multiple of MAC in each strain.

Keywords

Male, Isoflurane, Mesocricetus, Cardiomyopathy, Hypertrophic, Myocardial Contraction, Cricetinae, Depression, Chemical, Anesthetics, Inhalation, Animals, Female, Halothane

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Average
Top 10%
Average