Implementation of PAR-CLIP to characterize RNA-protein interactions in prokaryotes at nucleotide resolution
Implementation of PAR-CLIP to characterize RNA-protein interactions in prokaryotes at nucleotide resolution
AbstractThe identification of RNAs that are recognized by RNA-binding proteins (RNA-BPs) using techniques such as “Crosslinking and Immunoprecipitation” (CLIP) has revolutionized the genome-wide discovery of RNA-BP RNA targets. Among the different versions of CLIP that have been developed, the use of photoactivable nucleoside analogs incorporated into cellular RNA has resulted in high efficiency photoactivable ribonucleoside-enhanced CLIP (PAR-CLIP). Nonetheless, PAR-CLIP has not yet been applied in prokaryotes. To determine if PAR-CLIP can be used in prokaryotes, we determined suitable conditions for the incorporation of 4-thiouridine (4SU), a photoactivable nucleoside, intoE. coliRNA, and for the isolation of crosslinked RNA. Applying this technique to Hfq, a well-characterized regulator of small RNA (sRNA)-messenger RNA (mRNA) interactions, we showed that PAR-CLIP identified most of the known sRNA targets of Hfq, as well as functionally relevant sites of Hfq-mRNA interactions at nucleotide resolution. Based on our findings, PAR-CLIP represents an improved method to identify both the RNAs and the specific regulatory sites that are recognized by RNA-BPs in prokaryotes.
- Miami University United States
14 Research products, page 1 of 2
- 2017IsAmongTopNSimilarDocuments
- 1996IsAmongTopNSimilarDocuments
- 2010IsAmongTopNSimilarDocuments
- 2010IsAmongTopNSimilarDocuments
- 2010IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2008IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
