Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
Data sources: UnpayWall
Development
Article . 1996 . Peer-reviewed
Data sources: Crossref
Development
Article . 1997
versions View all 2 versions

The Dichaete gene of Drosophila melanogaster encodes a SOX-domain protein required for embryonic segmentation

Authors: S R, Russell; N, Sanchez-Soriano; C R, Wright; M, Ashburner;

The Dichaete gene of Drosophila melanogaster encodes a SOX-domain protein required for embryonic segmentation

Abstract

ABSTRACT We have cloned and characterised a member of the High Mobility Group superfamily of genes from Drosophila, Sox70D, which is closely related to the mammalian testis determining gene SRY. Sox70D corresponds to the dominant wing mutation Dichaete. Homozygous deletions of the Sox70D gene and recessive lethal Dichaete alleles have a variable embryonic segmentation phenotype. Dichaete is expressed in early embryos in a dynamic pattern reminiscent of gap and pair-rule genes and is required for the appropriate expression of the primary pair-rule genes even skipped, hairy and runt. The molecular nature of Dichaete and its expression pattern during early embryogenesis suggest that the gene plays a key role in early development; the variability in both the segmentation phenotype and the effects on pair-rule gene expression suggests that this role is to support the transcriptional regulation of key developmental genes rather than directly regulate any one of them.

Related Organizations
Keywords

Sequence Homology, Amino Acid, Molecular Sequence Data, Restriction Mapping, High Mobility Group Proteins, Gene Expression Regulation, Developmental, Genes, Insect, Chromatin, Animals, Genetically Modified, DNA-Binding Proteins, Mice, Drosophila melanogaster, Animals, Drosophila Proteins, Humans, Amino Acid Sequence, Cloning, Molecular, Chickens, Sequence Alignment, SOX Transcription Factors, Body Patterning

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    133
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
133
Top 10%
Top 10%
Top 10%
bronze