Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Endocrinologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Endocrinology
Article
Data sources: UnpayWall
Endocrinology
Article . 2013 . Peer-reviewed
Data sources: Crossref
Endocrinology
Article . 2013
versions View all 2 versions

Knockdown of RyR3 Enhances Adiponectin Expression Through an atf3-Dependent Pathway

Authors: Shu-Huei, Tsai; Emily Yun-Chia, Chang; Yi-Cheng, Chang; Siow-Wey, Hee; Yun-Chih, Tsai; Tien-Jyun, Chang; Lee-Ming, Chuang;

Knockdown of RyR3 Enhances Adiponectin Expression Through an atf3-Dependent Pathway

Abstract

Abstract Adiponectin is an important adipose-specific protein, which possesses insulin (INS)-sensitizing, antiinflammatory, and antiatherosclerotic functions. However, its regulation remains largely unknown. In this study, we identified that ryanodine receptor (RyR)3 plays an important role in the regulation of adiponectin expression. RyR3 was expressed in 3T3-L1 preadipocytes, and its level was decreased upon adipogenesis. Silencing of RyR3 expression in 3T3-L1 preadipocytes resulted in up-regulated adiponectin promoter activity, enhanced adiponectin mRNA expression, and more adiponectin protein secreted into the medium. An inverse relation between RyR3 and adiponectin mRNA levels was also observed in adipose tissues of db/db mice. In addition, knockdown of RyR3 with small interfering RNA (siRNA) in db/db mice and high-fat diet-fed obese mice increased serum adiponectin level, improved INS sensitivity, and lowered fasting glucose levels. These effects were in parallel with decreased mitochondrial Ca2+, increased mitochondrial mass, and reduced activating transcription factor 3 (atf3) expression. Overexpression of atf3 in 3T3-L1 preadipocytes blocked the effect of RyR3 silencing on adiponectin expression, indicating that an atf3-dependent pathway mediates the effect downstream of RyR3 silencing. Our data suggest that RyR3 may be a new therapeutic target for improving INS sensitivity and related metabolic disorders.

Keywords

Male, Mice, Inbred C3H, Activating Transcription Factor 3, Adipogenesis, Base Sequence, Gene Expression, Mice, Obese, Ryanodine Receptor Calcium Release Channel, Mice, 3T3-L1 Cells, Gene Knockdown Techniques, Adipocytes, Animals, Adiponectin, RNA, Messenger, Insulin Resistance, RNA, Small Interfering, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Average
bronze