Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Experimen...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Experimental Biology
Article . 2005 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Flight muscle properties and aerodynamic performance ofDrosophilaexpressing aflightintransgene

Authors: Byron, Barton; Gretchen, Ayer; Nicole, Heymann; David W, Maughan; Fritz-Olaf, Lehmann; Jim O, Vigoreaux;

Flight muscle properties and aerodynamic performance ofDrosophilaexpressing aflightintransgene

Abstract

SUMMARYFlightin is a multiply phosphorylated, myosin-binding protein found specifically in indirect flight muscles (IFM) of Drosophila. A null mutation in the flightin gene (fln0) compromises thick filament assembly and muscle integrity resulting in muscle degeneration and lost of flight ability. Using P-element-mediated transformation with the full-length flightin gene driven by the Actin88F promoter,we have achieved rescue of all fln0-related ultrastructural and functional defects of the IFM. Transgenic P{fln+}fln0 `rescued' flies have fewer thick filaments per myofbril than wild-type flies (782±13 vs945±9) but have otherwise normal IFM. Transgenic P{fln+}fln+ `tetraploid' flies have a normal number of thick filaments. The flightin protein levels in both transgenic strains are similar to wild type. By contrast, flightin levels are reduced in a myosin heavy chain tetraploid strain that produces excess myosin and excess thick filaments. These results suggest that regulation of flightin protein level is independent of gene copy number and that the number of thick filaments assembled per myofibril is influenced independently by myosin and flightin expression. We measured mechanical properties of IFM skinned fibers by sinusoidal analysis and found no significant differences in active viscoelastic properties of flightin-rescued and tetraploid transgenic flies vs wild type. The ability of the fln+transgene to overcome deficits in dynamic stiffness and power output in fln0 suggest that the flightin protein contributes directly to fiber stiffness and stretch activation. However, flight parameters at maximum locomotor capacity, measured in a virtual reality flight simulator,are slightly compromised for both transgenic strains. P{fln+}fln0 and P{fln+}fln+ flies generated enough flight force to sustain hovering flight but showed reduced capability to produce forces in excess of hovering flight force. Both strains showed reductions in stroke frequency but only P{fln+}fln+ showed reductions in stroke amplitude. Muscle and aerodynamic efficiency are similar among the two transgenic strains and wild type. These results illustrate the importance of flightin in flight muscle development and function.

Related Organizations
Keywords

Filamins, Muscle Fibers, Skeletal, Gene Expression, Muscle Proteins, Biomechanical Phenomena, Animals, Genetically Modified, Drosophila melanogaster, Flight, Animal, Animals, Drosophila Proteins, Muscle, Skeletal, Muscle Contraction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Top 10%
bronze