Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geneticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article . 2010 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article
Data sources: UnpayWall
Genetics
Article . 2010
versions View all 2 versions

Feed-Forward Regulation of a Cell Fate Determinant by an RNA-Binding Protein Generates Asymmetry in Yeast

Authors: Joshua J, Wolf; Robin D, Dowell; Shaun, Mahony; Michal, Rabani; David K, Gifford; Gerald R, Fink;

Feed-Forward Regulation of a Cell Fate Determinant by an RNA-Binding Protein Generates Asymmetry in Yeast

Abstract

AbstractSaccharomyces cerevisiae can divide asymmetrically so that the mother and daughter cells have different fates. We show that the RNA-binding protein Khd1 regulates asymmetric expression of FLO11 to determine daughter cell fate during filamentous growth. Khd1 represses transcription of FLO11 indirectly through its regulation of ASH1 mRNA. Khd1 also represses FLO11 through a post-transcriptional mechanism independent of ASH1. Cross-linking immunoprecipitation (CLIP) coupled with high-throughput sequencing shows that Khd1 directly binds repetitive sequences in FLO11 mRNA. Khd1 inhibits translation through this interaction, establishing feed-forward repression of FLO11. This regulation enables changes in FLO11 expression between mother and daughter cells, which establishes the asymmetry required for the developmental transition between yeast form and filamentous growth.

Keywords

Yeasts, RNA-Binding Proteins, Cell Count, Cell Differentiation, RNA, Messenger, Saccharomyces cerevisiae

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Top 10%
hybrid