Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao BioEssaysarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
BioEssays
Article . 2001 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
BioEssays
Article . 2001
versions View all 2 versions

Organ formation in Drosophila: Specification and morphogenesis of the salivary gland

Authors: P L, Bradley; A S, Haberman; D J, Andrew;

Organ formation in Drosophila: Specification and morphogenesis of the salivary gland

Abstract

AbstractThe Drosophila salivary gland has emerged as an outstanding model system for the process of organ formation. Many of the component steps, from initial regional specification through cell specialization and morphogenesis, are known and many of the genes required for these different processes have been identified. The salivary gland is a relatively simple organ; the entire gland comprises of only two major cell types, which derive from a single contiguous primordium. Salivary cells cease dividing once they are specified, and organ growth is achieved simply by an increase in size of individual cells, thus eliminating concerns about the potential unequal distribution of determinants during mitosis. Drosophila salivary glands form by the same cellular mechanisms as organs in higher organisms, including regulated cell shape changes, cell intercalation and directed cell migration. Thus, learning how these events are coordinated for tissue morphogenesis in an organism for which the genetic and molecular tools are unsurpassed should provide excellent paradigms for dissecting related processes in the more intricate organs of more complicated species. BioEssays 23:901–911, 2001. © 2001 John Wiley & Sons, Inc.

Related Organizations
Keywords

Drosophila melanogaster, Morphogenesis, Animals, Salivary Glands

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Top 10%
Top 10%
Top 10%