Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Mole...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Molecular Medicine
Article . 1997 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Isolation and Characterization of the Murine Homolog of the Human EXT2 Multiple Exostoses Gene

Authors: Dominique Stickens; Glen A. Evans;

Isolation and Characterization of the Murine Homolog of the Human EXT2 Multiple Exostoses Gene

Abstract

Multiple exostoses is a polygenic disease of bone formation and development characterized by the presence of cartilage-capped osseous projections emanating from the end of the long bones. Two members of a recently defined multigene family of proteins (EXT1 and 2) were shown to be involved in this disease. To investigate the evolutionary relatedness of EXT genes across species we isolated the mouse EXT2 cDNA. As in the human counterpart, the mouse EXT2 cDNA contains an open reading frame of 2154 bp encoding a predicted protein of 718 amino acids. The nucleic acid sequence is 87% identical to the human EXT2 transcript, resulting in an amino acid sequence which is 95% identical to the human protein. The mouse EXT2 gene also shows significant sequence similarity to the mouse and human EXT1 gene. Northern blot analysis shows that this gene is expressed in early stages of embryonic development, and in situ hybridizations suggest that EXT2 plays a role in limb development. The identification of the mouse EXT2 gene will allow functional analysis through insertional inactivation and reverse genetics in mice in order to better understand the formation of exostoses during bone formation.

Keywords

Base Sequence, Molecular Sequence Data, Proteins, Sequence Analysis, DNA, N-Acetylglucosaminyltransferases, Molecular Weight, Mice, Exostosin 2, Animals, Genes, Tumor Suppressor, Amino Acid Sequence, Cloning, Molecular, Exostoses, Multiple Hereditary

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Average
Top 10%
Top 10%