Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Protein Expression a...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Protein Expression and Purification
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Precipitation of human serum albumin from yeast culture liquid at pH values below 5

Authors: Sergey E, Cheperegin; Boris D, Efremov; Dmitry G, Kozlov;

Precipitation of human serum albumin from yeast culture liquid at pH values below 5

Abstract

In vivo and in vitro experiments showed that human serum albumin (HSA) co-precipitated with components of the commonly used yeast peptone dextrose (YPD) growth medium in aqueous solutions at pH <5. Yeast extract was found to be the primary component of YPD responsible for HSA precipitation. Among yeast extract constituents, RNAs are likely to be most important for HSA precipitation. HSA precipitation at pH <5 was reversible, so that HSA was easily re-solubilized by increasing pH above 6 with completely retained immunoreactivity. The co-precipitation and re-solubilization of HSA were solely pH-dependent and occurred almost instantly at room temperature. Practical aspects of the observed HSA co-precipitation are discussed.

Related Organizations
Keywords

Protein Stability, Temperature, RNA, Fungal, Hydrogen-Ion Concentration, Culture Media, Kinetics, RNA, Transfer, Yeasts, Chemical Precipitation, Humans, Serum Albumin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average