Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Zygotearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Zygote
Article . 2010 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
Zygote
Article . 2011
versions View all 2 versions

Nek2 and its substrate, centrobin/Nip2, are required for proper meiotic spindle formation of the mouse oocytes

Authors: Seongkeun, Sonn; Goo Taeg, Oh; Kunsoo, Rhee;

Nek2 and its substrate, centrobin/Nip2, are required for proper meiotic spindle formation of the mouse oocytes

Abstract

SummaryA typical centrosome consists of a pair of centrioles embedded in a proteinous matrix called pericentriolar material. However, the centrosomes in the mouse oocytes and early embryos lack centrioles, but consist of the γ-tubulin-enriched vesicle aggregates. We previously revealed that Nek2 and centrobin/Nip2, a centrosomal substrate of Nek2, is critical for the mouse early embryogenesis, especially at the step of spindle assembly during mitosis. In order to expand our understanding of the biological functions of Nek2, we examined expression and knockdown phenotypes of Nek2 and its substrates, centrobin and C-Nap1, in the mouse oocyte. Nek2, centrobin and C-Nap1 in the mouse oocytes were also centrosomal. Suppression of Nek2 and its substrates did not affect meiotic resumption of the oocytes. However, meiosis of theNek2- andcentrobin-suppressed oocytes was not completed, but arrested with defects in spindle assembly. No visible phenotype was observed in theC-Nap1-suppressed oocytes. These results indicate that Nek2 is critical for proper assembly of the meiotic spindles. Centrobin may be a possible substrate of Nek2 responsible for the meiotic spindle assembly in the mouse oocytes.

Related Organizations
Keywords

Centrosome, Proteins, Cell Cycle Proteins, Spindle Apparatus, Protein Serine-Threonine Kinases, Meiosis, Mice, Tubulin, Oocytes, Animals, NIMA-Related Kinases, Centrioles

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Average
Average
Top 10%