Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2005 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Isolation of a Gene Encoding a 1,2-Diacylglycerol-sn-acetyl-CoA Acetyltransferase from Developing Seeds of Euonymus alatus

Authors: Anne, Milcamps; Ajay W, Tumaney; Troy, Paddock; David A, Pan; John, Ohlrogge; Mike, Pollard;

Isolation of a Gene Encoding a 1,2-Diacylglycerol-sn-acetyl-CoA Acetyltransferase from Developing Seeds of Euonymus alatus

Abstract

1,2-Diacyl-3-acetyl-sn-glycerols (ac-TAG) are unusual triacylglycerols that constitute the major storage lipid in the seeds of Euonymus alatus (Burning Bush). These ac-TAGs have long-chain acyl groups esterified at both the sn-1 and sn-2 positions of glycerol. Cell-free extracts of developing seeds of E. alatus contain both long-chain acyl-CoA and acetyl-CoA sn-1,2-diacylglycerol acyltransferase (DGAT) activity. We have isolated a gene from developing seeds of Euonymus alatus that shows a very high sequence similarity to the members of the DGAT1 gene family (i.e. related to acyl-CoA:cholesterol acyltransferases). This Euonymus DGAT1 gene, when expressed in wild type yeast, results in a 5-fold enhancement of long-chain triacylglycerol (lc-TAG) accumulation, as well as the appearance of low levels of ac-TAG. Hydrogenated ac-TAG molecular species were identified by gas chromatography-mass spectrometry. Microsomes isolated from this transformed yeast show diacylglycerol:acetyl-CoA acetyltransferase activity, which is about 40-fold higher than that measured in microsomes prepared from yeast transformed with the empty vector or with the Arabidopsis thaliana DGAT1 gene. The specific activity of this microsomal acetyltransferase activity is of the same order of magnitude as the microsomal long-chain DGAT activities measured for yeast lines transformed with the empty vector or either the Arabidopsis or Euonymus DGAT1 genes. Despite this, ac-TAG accumulation in yeast transformed with the Euonymus DGAT1 gene was very low (0.26% of lc-TAG), whereas lc-TAG accumulation was enhanced. Possible reasons for this anomaly are discussed. Expression of the Euonymus DGAT1-like gene in yeast lines where endogenous TAG synthesis has been deleted confirmed that the gene product has both long-chain acyl- and acetyltransferase activity.

Related Organizations
Keywords

Arabidopsis Proteins, Plant Extracts, Euonymus, Molecular Sequence Data, Arabidopsis, Saccharomyces cerevisiae, Genes, Plant, Glycerides, Transformation, Genetic, Microsomes, Seeds, Amino Acid Sequence, Diacylglycerol O-Acyltransferase, Cloning, Molecular, Acyltransferases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Top 10%
Top 10%
Top 10%
gold