Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geneticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article . 2007 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Genetics
Article . 2007
Genetics
Article . 2007
versions View all 6 versions

A Genetic Screen for Modifiers of the Delta1-Dependent Notch Signaling Function in the Mouse

Authors: Rubio-Aliaga, Isabel; Soewarto, Dian; Wagner, Sibylle; Klaften, Matthias; Fuchs, Helmut; Kalaydjiev, Svetoslav; Busch, Dirk H.; +8 Authors

A Genetic Screen for Modifiers of the Delta1-Dependent Notch Signaling Function in the Mouse

Abstract

AbstractThe Notch signaling pathway is an evolutionarily conserved transduction pathway involved in embryonic patterning and regulation of cell fates during development. Recent studies have demonstrated that this pathway is integral to a complex system of interactions, which are also involved in distinct human diseases. Delta1 is one of the known ligands of the Notch receptors. Mice homozygous for a loss-of-function allele of the Delta1 gene Dll1lacZ/lacZ die during embryonic development. Here, we present the results of two phenotype-driven modifier screens. Heterozygous Dll1lacZ knockout animals were crossed with ENU-mutagenized mice and screened for dysmorphological, clinical chemical, and immunological variants that are dependent on the Delta1 loss-of-function allele. First, we show that mutagenized heterozygous Dll1lacZ offspring have reduced body weight and altered specific clinical chemical parameters, including changes in metabolites and electrolytes relevant for kidney function. In our mutagenesis screen we have successfully generated 35 new mutant lines. Of major interest are 7 mutant lines that exhibit a Dll1lacZ/+-dependent phenotype. These mutant mouse lines provide excellent in vivo tools for studying the role of Notch signaling in kidney and liver function, cholesterol and iron metabolism, cell-fate decisions, and during maturation of T cells in the immune system.

Keywords

Mice, Knockout, Genotype, Body Weight, Intracellular Signaling Peptides and Proteins, Membrane Proteins, Mice, Phenotype, Mutagenesis, Animals, Body Constitution, Body Weights and Measures, Genetic Testing, Alleles, Blood Chemical Analysis, Crosses, Genetic, DNA Primers, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Average
Top 10%
Top 10%
hybrid