Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 2006
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 2006 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

The stabilization of β-catenin leads to impaired primordial germ cell development via aberrant cell cycle progression

Authors: Noriko Yamano; Toshinobu Nakamura; Makoto Mark Taketo; Toru Nakano; Hiroki Umehara; Shoko Watanabe; Kazushige Murayama; +1 Authors

The stabilization of β-catenin leads to impaired primordial germ cell development via aberrant cell cycle progression

Abstract

Primordial germ cells (PGCs) are germ cell precursors that are committed to sperm or oocytes. Dramatic proliferation during PGC development determines the number of founder spermatogonia and oocytes. Although specified to a germ lineage, PGCs produce pluripotent embryonic germ (EG) cells in vitro and testicular teratomas in vivo. Wnt/beta-catenin signaling regulates pluripotency and differentiation in various stem cell systems, and dysregulation of this signaling causes various human cancers. Here, we examined the role of Wnt/beta-catenin signaling in PGC development. In normal PGC development, Wnt/beta-catenin signaling is suppressed by the GSK3beta-mediated active degradation of beta-catenin and the low expression of canonical Wnt molecules. The effects of aberrant activation of Wnt/beta-catenin signaling in PGCs were analyzed using mice carrying a deletion of the exon that encodes the GSK3beta phosphorylation sites in the beta-catenin locus. Despite the potential activity of Wnt/beta-catenin signaling in stem cell maintenance and carcinogenesis in various cell lineages, teratomas were not induced in the mice expressing the nuclear-localized beta-catenin in PGCs. Instead, the mutant mice showed germ cell deficiency caused by the delayed cell cycle progression of the proliferative phase PGCs. Our results show that the suppression of Wnt/beta-catenin signaling is a prerequisite for the normal development of PGCs.

Related Organizations
Keywords

Male, Multipotent Stem Cells, Proliferation, Cell Cycle, Mice, Transgenic, Cell Biology, β-catenin, Wnt, Mice, Germ Cells, Oogenesis, Primordial germ cell, Animals, Female, Spermatogenesis, Molecular Biology, beta Catenin, Developmental Biology, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    81
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
81
Top 10%
Top 10%
Top 10%
hybrid
Related to Research communities
Cancer Research