The Direct Interaction Between ASH2, a Drosophila Trithorax Group Protein, and SKTL, a Nuclear Phosphatidylinositol 4-Phosphate 5-Kinase, Implies a Role for Phosphatidylinositol 4,5-Bisphosphate in Maintaining Transcriptionally Active Chromatin
The Direct Interaction Between ASH2, a Drosophila Trithorax Group Protein, and SKTL, a Nuclear Phosphatidylinositol 4-Phosphate 5-Kinase, Implies a Role for Phosphatidylinositol 4,5-Bisphosphate in Maintaining Transcriptionally Active Chromatin
Abstract The products of trithorax group (trxG) genes maintain active transcription of many important developmental regulatory genes, including homeotic genes. Several trxG proteins have been shown to act in multimeric protein complexes that modify chromatin structure. ASH2, the product of the Drosophila trxG gene absent, small, or homeotic discs 2 (ash2) is a component of a 500-kD complex. In this article, we provide biochemical evidence that ASH2 binds directly to Skittles (SKTL), a predicted phosphatidylinositol 4-phosphate 5-kinase, and genetic evidence that the association of these proteins is functionally significant. We also show that histone H1 hyperphosphorylation is dramatically increased in both ash2 and sktl mutant polytene chromosomes. These results suggest that ASH2 maintains active transcription by binding a producer of nuclear phosphoinositides and downregulating histone H1 hyperphosphorylation.
- Johns Hopkins University United States
Phosphatidylinositol 4,5-Diphosphate, Transcription, Genetic, Immunoblotting, Molecular Sequence Data, Fluorescent Antibody Technique, Nuclear Proteins, Immunohistochemistry, Chromatin, Histones, Phosphotransferases (Alcohol Group Acceptor), Drosophila melanogaster, Mutation, Animals, Drosophila Proteins, Immunoprecipitation, Amino Acid Sequence, Phosphorylation, Sequence Alignment, Glutathione Transferase, Transcription Factors
Phosphatidylinositol 4,5-Diphosphate, Transcription, Genetic, Immunoblotting, Molecular Sequence Data, Fluorescent Antibody Technique, Nuclear Proteins, Immunohistochemistry, Chromatin, Histones, Phosphotransferases (Alcohol Group Acceptor), Drosophila melanogaster, Mutation, Animals, Drosophila Proteins, Immunoprecipitation, Amino Acid Sequence, Phosphorylation, Sequence Alignment, Glutathione Transferase, Transcription Factors
19 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).35 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
