Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Applied P...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Applied Physiology
Article . 2010 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Inhibition of calpain prevents muscle weakness and disruption of sarcomere structure during hindlimb suspension

Authors: Jay J, Salazar; Daniel E, Michele; Susan V, Brooks;

Inhibition of calpain prevents muscle weakness and disruption of sarcomere structure during hindlimb suspension

Abstract

Unloading skeletal muscle results in atrophy and weakness. Inhibition of calpain activity during unloading reduced atrophy, but the impact on force generation has not been determined. Our hypothesis was that inhibition of calpain, through muscle-specific overexpression of calpastatin, would prevent the disruption of sarcomere structure and decreased specific force (kN/m2) observed during unloading. Calpastatin-overexpressing ( cp) and wild-type ( wt) mice were subjected to 3, 9, or 14 days of hindlimb suspension (HS). Compared with soleus muscles of non-suspended control mice, soleus muscles of wt mice showed a 25% decline in mass after 14 days of HS while maximum isometric force (Po) decreased by 40%, resulting in a specific Pothat was 35% lower than control values. Over the same time period, muscles of cp mice demonstrated 25% declines in both mass and Pobut no change in specific Po. Consistent with the preservation of specific force during HS, soleus muscles of cp mice also maintained a high degree of order in sarcomere structure, in contrast to wt muscles that demonstrated misalignment of z-lines and decreased uniformity of thick filament lengths. Susceptibility to lengthening contraction-induced injury increased with the duration of HS and was not different for muscles of cp and wt mice. We conclude that inhibition of calpain activity during unloading preserves sarcomere structure such that the isometric force-generating capability is not diminished, while the effects of unloading on lengthening contraction-induced injury likely occur through calpain-independent mechanisms.

Related Organizations
Keywords

Male, Sarcomeres, Muscle Weakness, Calpain, Mice, Transgenic, Mice, Inbred C57BL, Mice, Hindlimb Suspension, Animals, Muscle, Skeletal, Muscle Contraction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    47
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
47
Top 10%
Top 10%
Top 10%
bronze