Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochimica et Biophy...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology
Article . 2000 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Substrate specificities and 13-cis-retinoic acid inhibition of human, mouse and bovine cis-retinol dehydrogenases

Authors: M V, Gamble; N L, Mata; A T, Tsin; J R, Mertz; W S, Blaner;

Substrate specificities and 13-cis-retinoic acid inhibition of human, mouse and bovine cis-retinol dehydrogenases

Abstract

Recent studies of the human, mouse and bovine genes for 11-cis-retinol dehydrogenase (11cRDH) and human and mouse 9-cis-retinol dehydrogenase (9cRDH) suggest that they are homologs of the same enzyme. This conclusion is inconsistent with earlier literature indicating that 11cRDH is expressed solely in the eye and does not utilize 9-cis-retinol as a substrate. We have compared directly the kinetic properties of recombinant human and mouse 9cRDH with those of bovine 11cRDH for 9-cis- and 11-cis-retinol and investigated the inhibitory properties of 13-cis-retinoic acid on each of these enzymes. Human and mouse 9cRDH and bovine 11cRDH have very similar kinetic properties towards 9-cis- and 11-cis-retinol oxidation and they respond identically to 13-cis-retinoic acid inhibition. Our biochemical data are consistent with the conclusion that 9cRDH and 11cRDH are the same enzyme.

Keywords

Alcohol Oxidoreductases, Kinetics, Mice, Animals, Humans, Cattle, Isotretinoin, Vitamin A, Substrate Specificity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Average
Top 10%
Top 10%