Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Neurobiol...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Neurobiology
Article . 1998 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
versions View all 2 versions

Midline fasciclin: ADrosophila fasciclin-I-related membrane protein localized to the CNS midline cells and trachea

Authors: S, Hu; M, Sonnenfeld; S, Stahl; S T, Crews;

Midline fasciclin: ADrosophila fasciclin-I-related membrane protein localized to the CNS midline cells and trachea

Abstract

Drosophila Fasciclin I is the prototype of a family of vertebrate and invertebrate proteins that mediate cell adhesion and signaling. The midline fasciclin gene encodes a second Drosophila member of the Fasciclin I family. Midline Fasciclin largely consists of four 150 amino acid repeats characteristic of the Fasciclin I family of proteins. Immunostaining and biochemical analysis using Midline Fasciclin antibodies indicates that it is a membrane-associated protein, although the sequence does not reveal a transmembrane domain. The gene is expressed in a dynamic fashion during embryogenesis in the blastoderm, central nervous system midline cells, and trachea, suggesting it plays multiple developmental roles. Protein localization studies indicate that Midline Fasciclin is found within cell bodies of midline neurons and glia, and on midline axons. Initial cellular analysis of a midline fasciclin loss-of-function mutation reveals only weak defects in axonogenesis. However, embryos mutant for both midline fasciclin and the abelson nonreceptor tyrosine kinase, show more severe defects in axonogenesis that resemble fasciclin I abelson double mutant phenotypes.

Keywords

Central Nervous System, Sequence Homology, Amino Acid, Cell Adhesion Molecules, Neuronal, Cell Membrane, Molecular Sequence Data, Gastrula, Protein-Tyrosine Kinases, Immunohistochemistry, Axons, Trachea, Mutation, Animals, Blastoderm, Drosophila, Amino Acid Sequence, Cloning, Molecular, Gene Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%