Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Plant Physiology and...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Plant Physiology and Biochemistry
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions

Comprehensive survey of redox sensitive starch metabolising enzymes in Arabidopsis thaliana

Authors: Glaring, Mikkel Andreas; Skryhan, Katsiaryna; Kötting, Oliver; Zeeman, Samuel C.; Blennow, Per Gunnar Andreas;

Comprehensive survey of redox sensitive starch metabolising enzymes in Arabidopsis thaliana

Abstract

In chloroplasts, the ferredoxin/thioredoxin pathway regulates enzyme activity in response to light by reduction of regulatory disulfides in target enzymes, ensuring coordination between photosynthesis and diurnal metabolism. Although earlier studies have suggested that many starch metabolic enzymes are similarly regulated, redox regulation has only been verified for a few of these in vitro. Using zymograms and enzyme assays, we performed a comprehensive analysis of the redox sensitivity of known starch metabolising enzymes in extracts of Arabidopsis thaliana. Manipulation of redox potentials revealed that several enzymatic activities where activated by reduction at physiologically relevant potentials. Among these where the isoamylase complex AtISA1/AtISA2, the limit dextrinase AtLDA, starch synthases AtSS1 and AtSS3, and the starch branching enzyme AtBE2. The reversibility of the redox reaction was confirmed by enzyme assays for AtLDA, AtSS1 and AtSS3. Analysis of an AtBAM1 knock-out mutant identified an additional redox sensitive β-amylase activity, which was most likely AtBAM3. A similar requirement for reducing conditions was observed for recombinant chloroplastic α-amylase (AtAMY3) activity. This study adds further candidates to the list of reductively activated starch metabolising enzymes and supports the view that redox regulation plays a role in starch metabolism.

Related Organizations
Keywords

Enzyme Activation, Chloroplasts, Arabidopsis Proteins, Amylases, Arabidopsis, Starch, Oxidation-Reduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
61
Top 10%
Top 10%
Top 10%