Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio della ricer...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1038/s41598...
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.nature.com/article...
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2021
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doaj.org/article/e84ba...
Article . 2021
Data sources: DOAJ
versions View all 5 versions

Imidazopyridine hydrazone derivatives exert antiproliferative effect on lung and pancreatic cancer cells and potentially inhibit receptor tyrosine kinases including c-Met

Authors: Damghani, Tahereh; Moosavi, Fatemeh; Khoshneviszadeh, Mehdi; Mortazavi, Motahareh; Pirhadi, Somayeh; Kayani, Zahra; Saso, Luciano; +2 Authors

Imidazopyridine hydrazone derivatives exert antiproliferative effect on lung and pancreatic cancer cells and potentially inhibit receptor tyrosine kinases including c-Met

Abstract

AbstractAberrant activation of c-Met signalling plays a prominent role in cancer development and progression. A series of 12 imidazo [1,2-α] pyridine derivatives bearing 1,2,3-triazole moiety were designed, synthesized and evaluated for c-Met inhibitory potential and anticancer effect. The inhibitory activity of all synthesized compounds against c-Met kinase was evaluated by a homogeneous time-resolved fluorescence (HTRF) assay at the concentration range of 5–25 µM. Derivatives 6d, 6e and 6f bearing methyl, tertiary butyl and dichloro-phenyl moieties on the triazole ring, respectively, were the compounds with the highest potential. They significantly inhibited c-Met by 55.3, 53.0 and 51.3%, respectively, at the concentration of 25 µM. Synthetic compounds showed antiproliferative effects against lung (EBC-1) and pancreatic cancer cells (AsPc-1, Suit-2 and Mia-PaCa-2) expressing different levels of c-Met, with IC50 values as low as 3.0 µM measured by sulforhodamine B assay. Active derivatives significantly blocked c-Met phosphorylation, inhibited cell growth in three-dimensional spheroid cultures and also induced apoptosis as revealed by Annexin V/propidium iodide flow cytometric assay in AsPc-1 cells. They also inhibited PDGFRA and FLT3 at 25 µM among a panel of 16 kinases. Molecular docking and dynamics simulation studies corroborated the experimental findings and revealed possible binding modes of the select derivatives with target receptor tyrosine kinases. The results of this study show that some imidazopyridine derivatives bearing 1,2,3-triazole moiety could be promising molecularly targeted anticancer agents against lung and pancreatic cancers.

Keywords

Lung Neoplasms, Receptor, Platelet-Derived Growth Factor alpha, Pyridines, Science, Apoptosis, Molecular Dynamics Simulation, Article, Structure-Activity Relationship, Cell Line, Tumor, Humans, Protein Kinase Inhibitors, Cell Proliferation, Q, R, Hydrazones, Imidazoles, Receptor Protein-Tyrosine Kinases, Proto-Oncogene Proteins c-met, Flow Cytometry, Gene Expression Regulation, Neoplastic, Molecular Docking Simulation, Pancreatic Neoplasms, fms-Like Tyrosine Kinase 3, antiproliferative; lung and pancreatic cancer; tyrosine kinases,pharmacology, Medicine

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Top 10%
Top 10%
Top 1%
Green
gold