Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1998 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

The Copper Chaperone CCS Directly Interacts with Copper/Zinc Superoxide Dismutase

Authors: Jonathan D. Gitlin; Darrel Waggoner; Ruby Leah B. Casareno;

The Copper Chaperone CCS Directly Interacts with Copper/Zinc Superoxide Dismutase

Abstract

Dominantly inherited mutations in the gene encoding copper/zinc superoxide dismutase (SOD1) result in the fatal motor neuron disease familial amyotrophic lateral sclerosis (FALS). These mutations confer a gain-of-function to SOD1 with neuronal degeneration resulting from enhanced free radical generating activity of the copper present in the mutant enzyme. The delivery of copper to SOD1 is mediated through a soluble factor identified as the copper chaperone for SOD1 (CCS). Amino acid sequence alignment of SOD1 and CCS reveals a striking homology with conservation of the amino acids essential for mediating SOD1 homodimerization. Here we demonstrate that CCS and SOD1 directly interact in vitro and in vivo and that this interaction is mediated via the homologous domains in each protein. Importantly, CCS interacts not only with wild-type SOD1 but also with SOD1 containing the common missense mutations resulting in FALS. Our findings therefore reveal a common mechanism whereby different SOD1 FALS mutants may result in neuronal injury and suggest a novel therapeutic approach in patients affected by this fatal disease.

Related Organizations
Keywords

Sequence Homology, Amino Acid, Superoxide Dismutase, Recombinant Fusion Proteins, Molecular Sequence Data, Transfection, Polymerase Chain Reaction, Recombinant Proteins, Liver, COS Cells, Escherichia coli, Mutagenesis, Site-Directed, Tumor Cells, Cultured, Animals, Humans, Point Mutation, Amino Acid Sequence, Cloning, Molecular, Dimerization, Sequence Alignment, Molecular Chaperones

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    250
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
250
Top 1%
Top 1%
Top 1%
gold