Physiological adaptation to irradiance in duckweeds is species and accession specific and depends on light habitat niche
Physiological adaptation to irradiance in duckweeds is species and accession specific and depends on light habitat niche
Abstract Duckweeds span 36 species of free-floating aquatic organisms with body sizes ranging from 2 mm to 10 mm, where each plant body plan is reduced to a largely leaf-like structure. As an emerging crop, their fast growth rates offer potential for cultivation in closed systems. We describe a novel UK collection derived from low light (dLL) or high light (dHL) habitats, profiled for growth, photosynthesis, and photoprotection (non-photochemical quenching, NPQ) responses. Twenty-three accessions of three Lemna species and one Spirodela polyrhiza were grown under relatively low light (LL: 100 μmol m–2 s–1) and high light (HL: 350 μmol m–2 s–1) intensities. We observed broad within- and between-species level variation in photosynthesis acclimation. Duckweeds grown under HL exhibited a lower growth rate, biomass, chlorophyll, and quantum yield of photosynthesis. In HL compared with LL, carotenoid de-epoxidation state and NPQ were higher, whilst PSII efficiency (φPSII) and Chl a:b ratios were unchanged. The dLL plants showed relatively stronger acclimation to HL compared with dHL plants, especially Lemna japonica accessions. These achieved faster growth in HL with concurrent higher carotenoid levels and NPQ, and less degradation of chlorophyll. We conclude that these data support local adaptation to the light environment in duckweed affecting acclimation in controlled conditions.
- University of Nottingham United Kingdom
- School of Life Sciences The University of Nottingham United Kingdom
- School of life science United Kingdom
- University of Essex United Kingdom
Chlorophyll, Plant Leaves, Light, Photosystem II Protein Complex, Biomass, Photosynthesis, Research Papers, Adaptation, Physiological, Carotenoids
Chlorophyll, Plant Leaves, Light, Photosystem II Protein Complex, Biomass, Photosynthesis, Research Papers, Adaptation, Physiological, Carotenoids
1 Research products, page 1 of 1
- IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).12 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
