Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Clinical ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Clinical Pathology
Article . 1992 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Epstein Barr virus (EBV) encoded small RNAs: targets for detection by in situ hybridisation with oligonucleotide probes.

Authors: Khan, G.; Coates, P. J.; Kangro, H. O.; Slavin, G.;

Epstein Barr virus (EBV) encoded small RNAs: targets for detection by in situ hybridisation with oligonucleotide probes.

Abstract

AIMS: To develop a rapid, sensitive, and specific non-isotopic in situ hybridisation (NISH) procedure for the detection of Epstein-Barr virus in formalin fixed, paraffin wax embedded tissues. METHODS: Two low molecular weight RNAs, designated EBER-1 and EBER-2 (Epstein-Barr encoded RNA), were used: cells latently infected with EBV secrete large amounts of EBERs. The method uses digoxigenin labelled anti-sense oligonucleotides, corresponding to sequences in EBER-1 and EBER-2. RESULTS: The use of these probes, in conjunction with high temperature microwave denaturation, ensured that the technique was considerably more sensitive than other in situ hybridisation techniques for detecting EBV. Furthermore, the hybridisation signal was morphologically distinct in that only the nucleus and not the nucleolus give a positive signal. No cross-hybridisation was observed with cells infected with other lymphotropic herpes viruses. CONCLUSION: The sensitivity, simplicity, and rapidity of this technique make it ideal for diagnostic use, and for studies investigating the role of this virus in neoplastic disease.

Keywords

Herpesvirus 4, Human, 610, Nucleic Acid Hybridization, Nasopharyngeal Neoplasms, Hodgkin Disease, Sensitivity and Specificity, Cell Line, Molecular Weight, Humans, RNA, Viral, Oligonucleotide Probes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    116
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
116
Top 10%
Top 10%
Top 10%
bronze