Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1991 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

CSK: a protein-tyrosine kinase involved in regulation of src family kinases.

Authors: M, Okada; S, Nada; Y, Yamanashi; T, Yamamoto; H, Nakagawa;

CSK: a protein-tyrosine kinase involved in regulation of src family kinases.

Abstract

The functions of src family protein-tyrosine kinases are thought to be regulated negatively by the phosphorylation of highly conserved tyrosine residues close to their carboxyl termini. Recently we have purified and cloned a protein-tyrosine kinase (designated as CSK) that can specifically phosphorylate the negative regulatory site of p60c-src. To elucidate the relationship between CSK and other types of src family kinases, we investigated the tissue distribution of CSK and examined whether CSK could phosphorylate the negative regulatory sites of src family kinases other than p60c-src. Western blot analysis indicated that CSK was enriched at the highest level in lymphoid tissues in which the expression of p60c-src is considerably lower than those of other types of src family kinases. CSK phosphorylated p56lyn and p59fyn, which are known to be expressed in lymphoid tissues at a relatively high level. The putative regulatory site, tyrosine 508, was found to be essential for phosphorylation in p56lyn, and the kinase activities of these src family kinases were repressed by phosphorylation with CSK. These findings raise the possibility that CSK might act as a universal regulator for src family kinases.

Related Organizations
Keywords

Blotting, Western, Molecular Sequence Data, Proto-Oncogene Proteins pp60(c-src), Animals, Electrophoresis, Polyacrylamide Gel, Trypsin, Amino Acid Sequence, Phosphorylation, Protein-Tyrosine Kinases, Regulatory Sequences, Nucleic Acid, Peptide Mapping, Protein Kinases, Rats

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    534
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
534
Top 10%
Top 1%
Top 1%
gold