Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Neuro-Onc...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Neuro-Oncology
Article . 2008 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Knockdown of GluR1 expression by RNA interference inhibits glioma proliferation

Authors: Li Lu; Yuji Piao; W. K. Alfred Yung; Gregory N. Fuller; John de Groot;

Knockdown of GluR1 expression by RNA interference inhibits glioma proliferation

Abstract

High-grade gliomas release excitotoxic concentrations of glutamate which contributes to their malignant phenotype. To improve our understanding of the mechanisms by which glutamate enhances tumor growth and invasion, we examined alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-mediated signaling in glioma cell lines. shRNA was used to stably knockdown GluR1, the most abundant AMPA receptor subunit in glioma, to evaluate its role in tumor signaling, proliferation and tumorigenicity. In a tissue array, there was a statistically significant increase in GluR1 expression in glioblastoma samples compared to anaplastic astrocytoma and low-grade tumors. In vitro, we observed a time and dose-dependent increase in MAPK phosphorylation following exposure to AMPA, which was blocked with AMPA receptor antagonists and the MEK1 inhibitor PD98059. Retroviral delivery of GluR1 shRNA in U251 and U87 glioma cells reduced GluR1 protein expression, inhibited AMPA-mediated increases in MAPK phosphorylation, and decreased glioma proliferation in vitro. U251 and U87 shGluR1 cells implanted into the flanks of nude mice grew slower than controls, which correlated with a decrease in proliferation measured by Ki-67 staining and an increase in apoptosis. These results suggest that AMPA receptors are abundantly expressed in high-grade gliomas and gene silencing of the GluR1 AMPA receptor subunit results in abrogation of AMPA-mediated signaling and tumor growth.

Keywords

Brain Neoplasms, Carcinogenicity Tests, Cell Cycle, Down-Regulation, Mice, Nude, Glioma, Microarray Analysis, Mice, Ki-67 Antigen, Gene Expression Regulation, Cell Line, Tumor, Animals, Humans, RNA Interference, Receptors, AMPA, RNA, Small Interfering, Cell Proliferation, RNA, Double-Stranded, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    86
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
86
Top 10%
Top 10%
Top 10%