Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cell Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cell Science
Article . 2003 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Formins: signaling effectors for assembly and polarization of actin filaments

Authors: Marie, Evangelista; Sally, Zigmond; Charles, Boone;

Formins: signaling effectors for assembly and polarization of actin filaments

Abstract

Eukaryotic cells require filamentous actin to maintain their shape and for movement, growth and replication. New actin filaments are formed by the cutting of existing filaments or de novo through the action of specialized nucleators. The most highly characterized nucleator is the Arp2/3 complex,which nucleates the branched actin networks in the lamellae of migrating cells. Recently, Bni1p, which is a member of the formin family of proteins,has been shown to nucleate actin filaments in vitro. Formins are implicated in the formation of actin cables in yeast, stress fibers in tissue culture cells and cytokinesis in many cell types. Formins contain two highly conserved formin-homology domains, FH1 and FH2. The Bni1p FH2 domain is sufficient to mediate nucleation. The Bni1p FH1 domain binds profilin, an actin-monomer-binding protein that delivers actin to the growing barbed end of filaments. The Bni1p FH1-profilin interaction enhances nucleation. Formins participate in a number of signaling pathways that control the assembly of specific actin structures and bind the barbed end of actin filaments, thereby providing a cytoskeletal basis for the establishment of cell polarity.

Keywords

Saccharomyces cerevisiae Proteins, Microfilament Proteins, Cell Polarity, Actins, Protein Structure, Tertiary, Actin Cytoskeleton, Profilins, Contractile Proteins, Animals, Humans, Protein Binding, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    256
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
256
Top 10%
Top 1%
Top 1%
bronze