Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Durham Research Onli...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1998 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions

cDNA Cloning, Expression, and Assembly Characteristics of Mouse Keratin 16

Authors: Porter, R.M.; Hutcheson, A.M.; Rugg, E.L.; Quinlan, R.A.; Lane, E.B.;

cDNA Cloning, Expression, and Assembly Characteristics of Mouse Keratin 16

Abstract

There has been speculation as to the existence of the mouse equivalent of human type I keratin 16 (K16). The function of this keratin is particularly intriguing because, in normal epidermis, it is usually confined to hair follicles and only becomes expressed in the suprabasal intrafollicular regions when the epidermis is traumatized. Previous studies suggested that K16 is highly expressed in the skin of mice carrying a truncated K10 gene. We therefore used the skin of heterozygous and homozygous mice to create a cDNA library, and we report here the successful cloning and sequencing of mouse K16. Recent in vitro studies suggested that filaments formed by human K16 are shorter than those formed by other type I keratins. One hypothesis put forward was that a proline residue in the 1B subdomain of the helical domain was responsible. The data presented here demonstrate that this proline is not conserved between mouse and human, casting doubt on the proposed function of this proline residue in filament assembly. In vitro assembly studies showed that mouse K16 produced long filaments in vitro. Also, in contrast to previous observations, transfection studies of PtK2 cells showed that mouse K16 (without the proline) and also human K16 (with the proline) can incorporate into the endogenous K8/K18 network without detrimental effect. In addition, K16 from both species can form filaments de novo when transfected with human K5 into immortalized human lens epithelial cells, which do not express keratins. These results suggest that reduced assembly capabilities due to unusual sequence characteristics in helix 1B are not the key to the unique function of K16. Rather, these data implicate the tail domain of K16 as the more likely protein domain that determines the unique functions.

Related Organizations
Keywords

Heterozygote, DNA, Complementary, 572, Base Sequence, Sequence Homology, Amino Acid, Homozygote, Molecular Sequence Data, Transfection, Polymerase Chain Reaction, Recombinant Proteins, Cell Line, Mice, Inbred C57BL, Mice, Animals, Newborn, Animals, Humans, Keratins, Amino Acid Sequence, Cloning, Molecular, Sequence Alignment, Skin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Average
Top 10%
Top 10%
Green
gold