Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Pediatric Cardiologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Pediatric Cardiology
Article . 2012 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

The Role of Shox2 in SAN Development and Function

Authors: Chaohui Chen; YiPing Chen; Xuefeng Hu; Yanding Zhang; Ramón A. Espinoza-Lewis; Hongbing Liu;

The Role of Shox2 in SAN Development and Function

Abstract

Embryonic development is a tightly regulated process, and many families of genes functions to provide a regulatory genetic network to achieve such a program. The homeobox genes are an extensive family that encodes transcription factors with a characteristic 60-amino acid homeodomain. Mutations in these genes or in the encoded proteins might result in structural malformations, physiological defects, and even embryonic death. Mutations in the short-stature homeobox gene (SHOX) is associated with idiopathic short stature in humans, as observed in patients with Turner syndrome and/or Leri-Weill dyschondrosteosis. A closely related human homolog, SHOX2, has not been linked to any syndrome or defect so far. In mice, a SHOX ortholog gene is not present in the genome; however, a true SHOX2 ortholog has been identified. Analyses of Shox2 knockout mouse models have showed crucial functions during embryonic development, including limb skeletogenesis, palatogenesis, temporomandibular joint formation, and cardiovascular development. During embryonic cardiac development, Shox2 is restrictedly expressed in the sinus venosus region, including the sinoatrial node (SAN) and the sinus valves. Shox2 null mutant is embryonically lethal due to cardiovascular defects, including a severely hypoplastic SAN and sinus valves attributed to a significantly decreased level of cell proliferation in addition to an abnormal low heartbeat rate (bradycardia). In addition, it has been demonstrated that Shox2 regulates a genetic network through the repression of Nkx2.5 to maintain the SAN fate and thus plays essential roles in its proper formation and differentiation.

Related Organizations
Keywords

Homeodomain Proteins, Mice, Short Stature Homeobox Protein, Genes, Homeobox, Animals, Gene Expression Regulation, Developmental, Humans, Heart, Sinoatrial Node, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%