Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular Neurobiolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Neurobiology
Article . 2020 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions

Glutathione Depletion and Parkinsonian Neurotoxin MPP+-Induced TRPM2 Channel Activation Play Central Roles in Oxidative Cytotoxicity and Inflammation in Microglia

Authors: Kenan Yıldızhan; Mustafa Nazıroğlu;

Glutathione Depletion and Parkinsonian Neurotoxin MPP+-Induced TRPM2 Channel Activation Play Central Roles in Oxidative Cytotoxicity and Inflammation in Microglia

Abstract

Parkinson's disease (PD) is one of most common neurodegenerative diseases. Environmental stressors such as oxidative stress (OS), calcium ion influx, apoptosis, and inflammation mechanisms are linked to activated microglia in patients with PD. The OS-dependent activated transient receptor potential melastatin 2 (TRPM2) channel is modulated in several neurons by glutathione (GSH). However, the cellular and molecular effects of GSH alteration on TRPM2 activation, OS, apoptosis, and inflammation in the microglia remain elusive. The microglia of TRPM2 wild-type (TRPM2-WT) and knockout (TRPM2-KO) mice were divided into control, PD model (MPP), L-buthionine sulfoximine (BSO), MPP + BSO and MPP + BSO + GSH groups. MPP-induced increases in apoptosis, death, OS, lipid peroxidation, PARP1, caspase-3 and caspase-9, inflammatory cytokines (IL-1β, TNF-α, IL-6), and intracellular free Zn2+ and Ca2+ levels in the microglia of TRPM2-WT mice were further increased by the BSO treatment, although they were diminished by the GSH treatment. Their levels were further reduced by PARP1 inhibitors (PJ34 and DPQ) and TRPM2 blockers (ACA and 2-APB). However, the effects of MPP and BSO were not observed in the microglia of TRPM2-KO mice. Taken together, our data demonstrate that maintaining GSH homeostasis is not only important for quenching OS in the microglia of patients with PD but also equally critical to modulating TRPM2, thus suppressing inflammatory responses elicited by environmental stressors.

Keywords

Mice, Knockout, Neurons, Neurotoxins, 610, TRPM Cation Channels, Apoptosis, Glutathione, Oxidative Stress, Animals, Microglia, Buthionine Sulfoximine

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
61
Top 1%
Top 10%
Top 1%