Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neuronarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuron
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuron
Article . 1999
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuron
Article . 1999 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Neuron
Article . 1999
versions View all 4 versions

Role of α9 Nicotinic ACh Receptor Subunits in the Development and Function of Cochlear Efferent Innervation

Authors: Vetter, Douglas E; Liberman, M.Charles; Mann, Jeffrey; Barhanin, Jacques; Boulter, Jim; Brown, M.Christian; Saffiote-Kolman, Joanne; +2 Authors

Role of α9 Nicotinic ACh Receptor Subunits in the Development and Function of Cochlear Efferent Innervation

Abstract

Cochlear outer hair cells (OHCs) express alpha9 nACh receptors and are contacted by descending, predominately cholinergic, efferent fibers originating in the CNS. Mice carrying a null mutation for the nACh alpha9 gene were produced to investigate its role(s) in auditory processing and development of hair cell innervation. In alpha9 knockout mice, most OHCs were innervated by one large terminal instead of multiple smaller terminals as in wild types, suggesting a role for the nACh alpha9 subunit in development of mature synaptic connections. Alpha9 knockout mice also failed to show suppression of cochlear responses (compound action potentials, distortion product otoacoustic emissions) during efferent fiber activation, demonstrating the key role alpha9 receptors play in mediating the only known effects of the olivocochlear system.

Keywords

Mice, Knockout, Hair Cells, Auditory, Outer, Mice, Neuroscience(all), Animals, Olivary Nucleus, Receptors, Nicotinic, Efferent Pathways, Cochlea

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    251
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
251
Top 10%
Top 1%
Top 1%
hybrid