Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1997 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Open Access Repository
Article . 1997
License: CC BY
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 6 versions

Identification of CRAMP, a Cathelin-related Antimicrobial Peptide Expressed in the Embryonic and Adult Mouse

Authors: Christine A. Kozak; Margherita Zanetti; Margherita Zanetti; Renato Gennaro; Laura Merluzzi; Richard L. Gallo; Merton Bernfield; +1 Authors

Identification of CRAMP, a Cathelin-related Antimicrobial Peptide Expressed in the Embryonic and Adult Mouse

Abstract

Cathelicidins are the precursors of potent antimicrobial peptides that have been identified in several mammalian species. Prior work has suggested that members of this gene family can participate in host defense through their antimicrobial effects and activate mesenchymal cells during wound repair. To permit further study of these proteins a reverse transcriptase-polymerase chain reaction approach was used to identify potential mouse homologs. A full-length 562-base pair cDNA clone was obtained encoding an NH2-terminal prepro domain homologous to other cathelicidins and a unique COOH-terminal peptide. This gene, named Cramp for cathelin-related antimicrobial peptide, was mapped to chromosome 9 at a region of conserved synteny to which genes for cathelicidins have been mapped in pig and man. Northern blot analysis detected a 1-kilobase transcript that was expressed in adult bone marrow and during embryogenesis as early as E12, the earliest stage of blood development. Reverse transcriptase-polymerase chain reaction also detected CRAMP expression in adult testis, spleen, stomach, and intestine but not in brain, liver, heart, or skeletal muscle. To evaluate further the expression and function of CRAMP, a peptide corresponding to the predicted COOH-terminal region was synthesized. CD spectral analysis showed that CRAMP will form an amphipathic alpha-helix similar to other antimicrobial peptides. Functional studies showed CRAMP to be a potent antibiotic against Gram-negative bacteria by inhibiting growth of a variety of bacterial strains (minimum inhibitory concentrations 0.5-8.0 microM) and by permeabilizing the inner membrane of Escherichia coli directly at 1 microM. Antiserum against CRAMP revealed abundant expression in myeloid precursors and neutrophils. Thus, CRAMP represents the first antibiotic peptide found in cells of myeloid lineage in the mouse. These data suggest that inflammatory cells in the mouse can use a nonoxidative mechanism for microbial killing and permit use of the mouse to study the role such peptides play in host defense and wound repair.

Keywords

DNA, Complementary, Base Sequence, Molecular Sequence Data, Chromosome Mapping, Proteins, Cell Biology, Biochemistry, Anti-Bacterial Agents, Embryonic and Fetal Development, Mice, Cathelicidins, Organ Specificity, Pregnancy, Animals, Female, Amino Acid Sequence, Cloning, Molecular, Molecular Biology, Antimicrobial Cationic Peptides

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    376
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
376
Top 1%
Top 1%
Top 10%
Green
gold