The E280A Presenilin Mutation Reduces Voltage-Gated Sodium Channel Levels in Neuronal Cells
The E280A Presenilin Mutation Reduces Voltage-Gated Sodium Channel Levels in Neuronal Cells
<b><i>Background:</i></b> Familial Alzheimer's disease (FAD) mutations in presenilin (PS) modulate PS/γ-secretase activity and therefore contribute to AD pathogenesis. Previously, we found that PS/γ-secretase cleaves voltage-gated sodium channel β<sub>2</sub>-subunits (Na<sub>v</sub>β<sub>2</sub>), releases the intracellular domain of Na<sub>v</sub>β<sub>2</sub> (β<sub>2</sub>-ICD), and thereby, increases intracellular sodium channel α-subunit Na<sub>v</sub>1.1 levels. Here, we tested whether FAD-linked PS1 mutations modulate Na<sub>v</sub>β<sub>2</sub> cleavages and Na<sub>v</sub>1.1 levels. <b><i>Objective:</i></b> It was the aim of this study to analyze the effects of PS1-linked FAD mutations on Na<sub>v</sub>β<sub>2</sub> processing and Na<sub>v</sub>1.1 levels in neuronal cells. <b><i>Methods:</i></b> We first generated B104 rat neuroblastoma cells stably expressing Na<sub>v</sub>β<sub>2</sub> and wild-type PS1 (wtPS1), PS1 with one of three FAD mutations (E280A, M146L or ΔE9), or PS1 with a non-FAD mutation (D333G). Na<sub>v</sub>β<sub>2</sub> processing and Na<sub>v</sub>1.1 protein and mRNA levels were then analyzed by Western blot and real-time RT-PCR, respectively. <b><i>Results:</i></b> The FAD-linked E280A mutation significantly decreased PS/γ-secretase-mediated processing of Na<sub>v</sub>β<sub>2</sub> as compared to wtPS1 controls, both in cells and in a cell-free system. Na<sub>v</sub>1.1 mRNA and protein levels, as well as the surface levels of Na<sub>v</sub> channel α-subunits, were also significantly reduced in PS1(E280A) cells. <b><i>Conclusion:</i></b> Our data indicate that the FAD-linked PS1(E280A) mutation decreases Na<sub>v</sub> channel levels by partially inhibiting the PS/γ-secretase-mediated cleavage of Na<sub>v</sub>β<sub>2</sub> in neuronal cells.
- Massachusetts General Hospital United States
- Harvard University United States
Neurons, Reverse Transcriptase Polymerase Chain Reaction, Blotting, Western, Presenilins, Voltage-Gated Sodium Channels, Real-Time Polymerase Chain Reaction, Transfection, Rats, Mutation, Animals, Amyloid Precursor Protein Secretases, Cells, Cultured
Neurons, Reverse Transcriptase Polymerase Chain Reaction, Blotting, Western, Presenilins, Voltage-Gated Sodium Channels, Real-Time Polymerase Chain Reaction, Transfection, Rats, Mutation, Animals, Amyloid Precursor Protein Secretases, Cells, Cultured
4 Research products, page 1 of 1
- 2016IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
