Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1038/srep42...
Article . 2017 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.nature.com/article...
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2017
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions

Amyloid-β Oligomers Interact with Neurexin and Diminish Neurexin-mediated Excitatory Presynaptic Organization

Authors: Alfred Kihoon Lee; Yuko Tanabe; Edith Hamel; Hideto Takahashi; Hideto Takahashi; Yusuke Naito;

Amyloid-β Oligomers Interact with Neurexin and Diminish Neurexin-mediated Excitatory Presynaptic Organization

Abstract

AbstractAlzheimer’s disease (AD) is characterized by excessive production and deposition of amyloid-beta (Aβ) proteins as well as synapse dysfunction and loss. While soluble Aβ oligomers (AβOs) have deleterious effects on synapse function and reduce synapse number, the underlying molecular mechanisms are not well understood. Here we screened synaptic organizer proteins for cell-surface interaction with AβOs and identified a novel interaction between neurexins (NRXs) and AβOs. AβOs bind to NRXs via the N-terminal histidine-rich domain (HRD) of β-NRX1/2/3 and alternatively-spliced inserts at splicing site 4 of NRX1/2. In artificial synapse-formation assays, AβOs diminish excitatory presynaptic differentiation induced by NRX-interacting proteins including neuroligin1/2 (NLG1/2) and the leucine-rich repeat transmembrane protein LRRTM2. Although AβOs do not interfere with the binding of NRX1β to NLG1 or LRRTM2, time-lapse imaging revealed that AβO treatment reduces surface expression of NRX1β on axons and that this reduction depends on the NRX1β HRD. In transgenic mice expressing mutated human amyloid precursor protein, synaptic expression of β-NRXs, but not α-NRXs, decreases. Thus our data indicate that AβOs interact with NRXs and that this interaction inhibits NRX-mediated presynaptic differentiation by reducing surface expression of axonal β-NRXs, providing molecular and mechanistic insights into how AβOs lead to synaptic pathology in AD.

Keywords

Amyloid beta-Peptides, Cell Adhesion Molecules, Neuronal, Presynaptic Terminals, Gene Expression, Membrane Proteins, Nerve Tissue Proteins, Article, Axons, Cell Line, Alternative Splicing, Disease Models, Animal, Mice, Alzheimer Disease, COS Cells, Chlorocebus aethiops, Animals, Humans, Protein Interaction Domains and Motifs, Protein Multimerization, Cells, Cultured, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Average
Top 10%
Green
gold