Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Neuroscie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Neuroscience
Article . 2002 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions

Involvement of the Neuropeptide Nociceptin/Orphanin FQ in Kainate Seizures

Authors: BREGOLA, Gianni; ZUCCHINI, Silvia; RODI, Donata; BINASCHI, Anna; D'ADDARIO C; LANDUZZI D; REINSCHEID R; +3 Authors

Involvement of the Neuropeptide Nociceptin/Orphanin FQ in Kainate Seizures

Abstract

The neuropeptide nociceptin/orphanin FQ (N/OFQ) has been shown to modulate neuronal excitability and neurotransmitter release. Previous studies indicate that the mRNA levels for the N/OFQ precursor (proN/OFQ) are increased after seizures. However, it is unclear whether N/OFQ plays a role in seizure expression. Therefore, (1) we analyzed proN/OFQ mRNA levels and NOP (the N/OFQ receptor) mRNA levels and receptor density in the kainate model of epilepsy, using Northern blot analysis, in situ hybridization, and receptor binding assay, and (2) we examined susceptibility to kainate seizure in mice treated with 1-[(3R, 4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1, 3-dihydro-benzimidazol-2-one (J-113397), a selective NOP receptor antagonist, and in proN/OFQ knock-out mice. After kainate administration, increased proN/OFQ gene expression was observed in the reticular nucleus of the thalamus and in the medial nucleus of the amygdala. In contrast, NOP mRNA levels and receptor density decreased in the amygdala, hippocampus, thalamus, and cortex. Mice treated with the NOP receptor antagonist J-113397 displayed reduced susceptibility to kainate-induced seizures (i.e., significant reduction of behavioral seizure scores). N/OFQ knock-out mice were less susceptible to kainate seizures compared with their wild-type littermates, in that lethality was reduced, latency to generalized seizure onset was prolonged, and behavioral seizure scores decreased. Intracerebroventricular administration of N/OFQ prevented reduced susceptibility to kainate seizures in N/OFQ knock-out mice. These data indicate that acute limbic seizures are associated with increased N/OFQ release in selected areas, causing downregulation of NOP receptors and activation of N/OFQ biosynthesis, and support the notion that the N/OFQ-NOP system plays a facilitatory role in kainate seizure expression.

Keywords

neuropeptide Orphanin FQ; NOP receptor; kindled seizures, Male, Mice, Knockout, Kainic Acid, Narcotic Antagonists, Cell Membrane, Homozygote, Brain, Binding, Competitive, Hippocampus, Epilepsy; Kainate; Knock-out mice; Nociceptin; Opioid receptor like-1; Seizure;, Mice, Inbred C57BL, Disease Models, Animal, Mice, Prosencephalon, Opioid Peptides, Piperidines, Organ Specificity, Animals, Benzimidazoles, RNA, Messenger, Injections, Intraventricular

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Average
Top 10%
Top 10%
bronze