Drosophila Models of Proteinopathies: the Little Fly that Could
Drosophila Models of Proteinopathies: the Little Fly that Could
Alzheimer's, Parkinson's, and Huntington's disease are complex neurodegenerative conditions with high prevalence characterized by protein misfolding and deposition in the brain. Considerable progress has been made in the last two decades in identifying the genes and proteins responsible for several human 'proteinopathies'. A wide variety of wild type and mutant proteins associated with neurodegenerative conditions are structurally unstable, misfolded, and acquire conformations rich in ß-sheets (ß-state). These conformers form highly toxic self-assemblies that kill the neurons in stereotypical patterns. Unfortunately, the detailed understanding of the molecular and cellular perturbations caused by these proteins has not produced a single disease-modifying therapy. More than a decade ago, several groups demonstrated that human proteinopathies reproduce critical features of the disease in transgenic flies, including protein mis-folding, aggregation, and neurotoxicity. These initial reports led to an explosion of research that has contributed to a better understanding of the molecular mechanisms regulating conformational dynamics and neurotoxic cascades. To remain relevant in this competitive environment, Drosophila models will need to expand their flexible, innovative, and multidisciplinary approaches to find new discoveries and translational applications.
- Department of Neurology Netherlands
- University of Florida United States
- University of Florida United States
- University of Florida
Protein Folding, Protein Conformation, Neurodegenerative Diseases, Parkinson Disease, Article, Disease Models, Animal, Drosophila melanogaster, Huntington Disease, Alzheimer Disease, Animals, Drosophila Proteins, Humans
Protein Folding, Protein Conformation, Neurodegenerative Diseases, Parkinson Disease, Article, Disease Models, Animal, Drosophila melanogaster, Huntington Disease, Alzheimer Disease, Animals, Drosophila Proteins, Humans
44 Research products, page 1 of 5
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).47 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
