Specific mitochondrial calcium overload induces mitochondrial fission in prostate cancer cells
doi: 10.3892/ijo_00000629
pmid: 20428767
Specific mitochondrial calcium overload induces mitochondrial fission in prostate cancer cells
Mitochondria are structurally complex organelles that undergo fragmentation or fission in apoptotic cells. Mitochondrial fission requires the cytoplasmic dynamin-related protein, Drp1, which translocates to the mitochondria during apoptosis and interacts with the mitochondrial protein, Fis1. Finely tuned changes in cellular calcium modulate a variety of intracellular functions; in resting cells, the level of mitochondrial calcium is low, while it is higher during apoptosis. Mitochondria take up Ca(2+) via the Uniporter and extrude it to the cytoplasm through the mitochondrial Na+/Ca(2+) exchanger. Overload of Ca(2+) in the mitochondria leads to their damage, affecting cellular function and survival. The mitochondrial Na+/Ca2+ exchanger was blocked by benzodiazepine, CGP37157 (CGP) leading to increased mitochondrial calcium and enhancing the apoptotic effects of TRAIL, TNFalpha related apoptosis inducing ligand. In the present study, we observed that increasing mitochondrial calcium induced mitochondrial fragmentation, which correlated with the presence of Drp1 at the mitochondria in CGP treated cells. Under these conditions, we observed interactions between Drp1 and Fis1. The importance of Drp1 in fragmentation was confirmed by transfection of dominant negative Drp1 construct. However, fragmentation of the mitochondria was not sufficient to induce apoptosis, although it enhanced TRAIL-induced apoptosis. Furthermore, oligomerization of Bak was partially responsible for the increased apoptosis in cells treated with both CGP and TRAIL. Thus, our results show that combination of an apoptogenic agent and an appropriate calcium channel blocker provide therapeutic advantages.
- Veterans Health Administration United States
- Charlie Norwood VA Medical Center United States
- Georgia Regents University United States
Dynamins, Male, Thiazepines, Blotting, Western, Membrane Proteins, Prostatic Neoplasms, Apoptosis, Immunohistochemistry, Clonazepam, Sodium-Calcium Exchanger, GTP Phosphohydrolases, Mitochondria, Mitochondrial Proteins, TNF-Related Apoptosis-Inducing Ligand, Microscopy, Electron, Transmission, Cell Line, Tumor, Humans, Immunoprecipitation, Calcium, Microtubule-Associated Proteins
Dynamins, Male, Thiazepines, Blotting, Western, Membrane Proteins, Prostatic Neoplasms, Apoptosis, Immunohistochemistry, Clonazepam, Sodium-Calcium Exchanger, GTP Phosphohydrolases, Mitochondria, Mitochondrial Proteins, TNF-Related Apoptosis-Inducing Ligand, Microscopy, Electron, Transmission, Cell Line, Tumor, Humans, Immunoprecipitation, Calcium, Microtubule-Associated Proteins
19 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).64 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
