Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2002 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
UNC Dataverse
Article . 2002
Data sources: Datacite
versions View all 3 versions

Regulation of Synaptophysin Degradation by Mammalian Homologues of Seven in Absentia

Authors: Tiffany C. Wheeler; Francine L. Roudabush; Lian Li; Lian Li; Yankun Li; Yankun Li; Lih-Shen Chin; +1 Authors

Regulation of Synaptophysin Degradation by Mammalian Homologues of Seven in Absentia

Abstract

Synaptophysin is an integral membrane protein of synaptic vesicles characterized by four transmembrane domains with both termini facing the cytoplasm. Although synaptophysin has been implicated in neurotransmitter release, and decreased synaptophysin levels have been associated with several neurodegenerative diseases, the molecular mechanism that regulates the degradation of synaptophysin remains unsolved. Using the cytoplasmic C terminus of synaptophysin as bait in a yeast two-hybrid screen, we identified two synaptophysin-binding proteins, Siah-1A and Siah-2, which are rat homologues of Drosophila Seven in Absentia. We demonstrated that Siah-1A and Siah-2 associate with synaptophysin both in vitro and in vivo and defined the binding domains of synaptophysin and Siah that mediate their association. Siah proteins exist in both cytosolic and membrane-associated pools and co-localize with synaptophysin on synaptic vesicles and early endosomes. In addition, Siah proteins interact specifically with the brain-enriched E2 ubiquitin-conjugating enzyme UbcH8 and facilitate the ubiquitination of synaptophysin. Furthermore, overexpression of Siah proteins promotes the degradation of synaptophysin via the ubiquitin-proteasome pathway. Our findings indicate that Siah proteins function as E3 ubiquitin-protein ligases to regulate the ubiquitination and degradation of synaptophysin.

Keywords

Neurons, Cytoplasm, DNA, Complementary, Cell Membrane, Molecular Sequence Data, Down-Regulation, Nuclear Proteins, CHO Cells, PC12 Cells, Ligases, Cytosol, Microscopy, Fluorescence, Cricetinae, Animals, Humans, Amino Acid Sequence, Cloning, Molecular, Peptides, Glutathione Transferase, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    151
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
151
Top 10%
Top 10%
Top 1%
gold