Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genes Brain & Behavi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Genes Brain & Behavior
Article . 2010 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
UNC Dataverse
Article . 2010
Data sources: Datacite
versions View all 3 versions

Comt1 genotype and expression predicts anxiety and nociceptive sensitivity in inbred strains of mice

Authors: S K, Segall; A G, Nackley; L, Diatchenko; W R, Lariviere; X, Lu; J S, Marron; L, Grabowski-Boase; +8 Authors

Comt1 genotype and expression predicts anxiety and nociceptive sensitivity in inbred strains of mice

Abstract

Catechol‐O‐methyltransferase (COMT) is a ubiquitously expressed enzyme that maintains basic biologic functions by inactivating catechol substrates. In humans, polymorphic variance at the COMT locus has been associated with modulation of pain sensitivity and risk for developing psychiatric disorders. A functional haplotype associated with increased pain sensitivity was shown to result in decreased COMT activity by altering mRNA secondary structure‐dependent protein translation. However, the exact mechanisms whereby COMT modulates pain sensitivity and behavior remain unclear and can be further studied in animal models. We have assessed Comt1 gene expression levels in multiple brain regions in inbred strains of mice and have discovered that Comt1 is differentially expressed among the strains, and this differential expression is cis‐regulated. A B2 short interspersed nuclear element (SINE) was inserted in the 3′‐untranslated region (3′‐UTR) of Comt1 in 14 strains generating a common haplotype that correlates with gene expression. Experiments using mammalian expression vectors of full‐length cDNA clones with and without the SINE element show that strains with the SINE haplotype (+SINE) have greater Comt1 enzymatic activity. +SINE mice also exhibit behavioral differences in anxiety assays and decreased pain sensitivity. These results suggest that a haplotype, defined by a 3′‐UTR B2 SINE element, regulates Comt1 expression and some mouse behaviors.

Keywords

Male, Pain Threshold, Pain, Mice, Inbred Strains, Anxiety, Catechol O-Methyltransferase, Hippocampus, Mice, Mutagenesis, Insertional, Species Specificity, Exploratory Behavior, Animals, Female, RNA, Messenger, Maze Learning

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Average
Top 10%
Top 10%
bronze