Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archives of Oral Bio...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Archives of Oral Biology
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Novel MSX1 mutation in a family with autosomal-dominant hypodontia of second premolars and third molars

Authors: Adrianna, Mostowska; Barbara, Biedziak; Pawel P, Jagodzinski;

Novel MSX1 mutation in a family with autosomal-dominant hypodontia of second premolars and third molars

Abstract

Tooth agenesis is the most common developmental anomaly of the human dentition, with aetiology involving both genetic and environmental factors. The aim of the study was to search for casual mutations underlying hypodontia in a family with agenesis of the second premolars and third molars.Direct sequencing of the coding regions including exon-intron boundaries of the MSX1 and PAX9 genes was performed in all affected family members.Novel heterozygous mutation segregating in an autosomal dominant model was identified in the MSX1 gene. This c.T671C transition leads to a substitution of leucine by proline at position 224, which is the penultimate amino acid residue of the highly conserved homeodomain. None of the control subjects (600 chromosomes) were carriers of this novel, probably damaging to protein function, mutation.Our results demonstrate for the first time that MSX1 might play a substantial role in familial cases of hypodontia involving only second premolars and third molars. The novel c.T671C mutation might be the etiological variant of the MSX1 gene responsible for the lack of permanent teeth in the tested family.

Related Organizations
Keywords

MSX1 Transcription Factor, Adolescent, DNA Mutational Analysis, Pedigree, Case-Control Studies, Mutation, Humans, Bicuspid, Female, Molar, Third, PAX9 Transcription Factor, Anodontia, Genes, Dominant

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%